Tetrahedron 65 (2009) 9300-9315

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Regioselective synthesis of amino- and nitroarenes based on [3+3]cyclocondensations of 1,3-bis(silyloxy)-1,3-butadienes

Abdolmajid Riahi^{a,b}, Mohanad Shkoor^a, Olumide Fatunsin^a, Mirza A. Yawer^a, Ibrar Hussain^a, Christine Fischer^b, Peter Langer^{a,b,*}

ABSTRACT

with 3-ethoxy-2-nitro-2-en-1-ones.

^a Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany ^b Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany

ARTICLE INFO

Article history Received 30 April 2009 Received in revised form 25 August 2009 Accepted 3 September 2009 Available online 9 September 2009

Keywords: Arenes Cyclizations Nitro compounds Regioselectivity Silvl enol ethers

1. Introduction

Functionalized 4-nitro- and 4-aminophenols are of considerable pharmacological relevance and occur in several natural products.¹ 4-Nitrophenols show antiandrogenetic,^{2a} vasodilative,^{2b} and estrogenic activity.^{2c} A wide range of pharmacological activities has been reported for functionalized 4-aminophenols and related molecules.^{3–8} Amino- and nitro-substituted biaryl derivatives are also of considerable current interest, due to their anti-hepatitis and antimalarial activity, binding affinity to C5a receptor (human monocyte cell line U937), inhibition of cyclic nucleotide phosphorodiesterases (PDEs), and activity for topoisomerases I and II-mediated DNA cleavage.⁸ Dibenzo[b,d]pyrid-6-ones (6(5H)-phenanthridinones) can be regarded as lactams derived from aminosubstituted biaryls. Similar to amino-substituted biaryls, they are of considerable pharmacological relevance and occur in a variety of natural products. For example, sanguinarinone shows anti-proliferative activity against leukemia HL-60 cells, antiparasitic activity, and anticoagulant activity.⁹ Anti-proliferative activity against P-388 and human colon carcinoma HT-29 cells have been reported for oxotoddaline.¹⁰ Oxynitidine possesses cytotoxic activity.¹¹ Several other biologically active natural products, such as narciprimine,

* Corresponding author. Fax: +49 381 4986412. *E-mail address:* peter.langer@uni-rostock.de (P. Langer).

0040-4020/\$ - see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.09.014

chelirubinone, oxychelirubine, arolycoricidine, pratosine, turraeanthin B, or kalbretorine, are known.¹²

© 2009 Elsevier Ltd. All rights reserved.

Functionalized amino- and nitro-substituted biaryls and dibenzo[b,d]pyrid-6-ones (6(5H)-phenan-

thridinones) were prepared by [3+3]cyclocondensation of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with

nitro-substituted 1-aryl-1-silyloxy-1-en-3-ones and subsequent hydrogenation. 4-Nitro- and 4-amino-

phenols were prepared based on formal [3+3] cyclizations of 1,3-bis(trimethylsilyloxy)-1,3-butadienes

Sanguinarinone Narciprimine

The synthesis of nitro- and amino-substituted arenes and biaryls by nitration¹³ of arenes and biphenyls suffers from the low regioselectivity. The classical synthesis of parent *p*-nitrophenol relies on the nitration of phenol with nitric acid and subsequent steam distillation (15% yield). The competing formation of *o*-nitrophenol is a severe problem.¹⁴ Various studies to increase the yield of pure 4-nitrophenol and related derivatives have been carried out.¹⁵ Recently, *p*-nitrophenol has been prepared in 80% yield by nitration of phenol with Fe(NO₃)₃·9H₂O in the ionic liquid [bbim][BF₄].¹⁶ An additional problem arises from the fact that, due to the harsh reaction conditions, several side-reactions are possible for more complex substrates. Nitro-substituted biarvls are available by Ullmann-type reactions and by nucleophilic aromatic substitutions.¹⁷ However, the scope of these reactions is limited by steric and electronic effects (low conversion, formation of regioisomeric mixtures). The synthesis of amino-substituted biarvls by

palladium(0)-catalyzed coupling reactions¹⁸ suffers from the fact that electron-rich arenes, in particular sterically encumbered substrates, often react sluggishly or not at all. Last but not the least, the synthesis of the required starting materials, highly functionalized or sterically encumbered aryl halides or triflates (the latter derived from the corresponding phenols), can be a difficult and tedious task. 6(5H)-Phenanthridinones have been prepared from 2-alkoxy-carbonyl-2-nitrobiaryls by reduction of the nitro into an amino group (using Fe/AcOH, Fe/THF, Zn/HOAc, Raney-Ni, or H₂-Pd/C) and subsequent cyclization.¹⁹ Whereas this process is straightforward, problems are, as described above, associated to the synthesis of functionalized biaryl systems.

All syntheses of nitro- and amino-substituted arenes and biaryls, which were outlined above, rely on the functionalization of a suitable arene. An interesting alternative is based on the use of synthetic building blocks in cyclocondensation reactions. Davies et al. reported the regioselective synthesis of anilines by addition of ketones to vinamidinium salts.²⁰ Carter and co-workers reported the synthesis of nitro-substituted biaryls based on Diels-Alder reactions.²¹ Chan and co-workers were the first to report²² a convenient synthesis of functionalized phenols by TiCl₄-mediated [3+3] cyclization²³ of 1,3bis(trimethylsilyloxy)-1,3-butadienes²⁴ with 3-silyloxy-2-en-1ones. Recently, we have reported²⁵ the application of this reaction to the synthesis of nitro- and amino-substituted biaryls and of 6(5H)phenanthridinones. We have also reported the synthesis of 4-nitroand 4-aminophenols based on formal [3+3] cyclizations of 1.3-bis(trimethylsilvloxy)-1.3-butadienes with 3-ethoxy-2-nitro-2en-1-ones.²⁶ Herein, we report full details of both studies. All products reported herein are not readily available by other methods.

2. Results and discussion

The novel nitro-substituted benzoylacetones **3a–e,g,h** were prepared in 34–85% yields by LDA-mediated reaction of ketones **1a–e** with benzoyl chlorides **2a–c** (Scheme 1, Table 1). The reaction of **3c** with *N*-chlorosuccinimide (NCS) gave the chlorinated benzoylacetone **3f**. The silylation of **3a–h** afforded the 1-aryl-1-silyl-oxy-1-en-3-ones **4a–h** in high yields.

Scheme 1. Synthesis of **3a-h** and **4a-h**; *i*: LDA (1.5 equiv), THF; ii: 1) NEt₃ (1.6 equiv), Me₃SiCl (1.8 equiv), C₆H₆, 20 °C, 3 d. Products **4** exist as mixtures of E/Z isomers.

Table 1			
Synthesis	of 3a-h	and	4a-h

3,4	\mathbb{R}^1	R ²	R ³	R ⁴	R ⁵	% (3) ^a	% (4) ^a
a	Н	Me	NO ₂	Н	Н	54	91
b	Н	Et	NO_2	Н	Н	45	95
с	Н	nPr	NO_2	Н	Н	45	88
d	Н	<i>n</i> Bu	NO_2	Н	Н	40	93
e	Me	Et	NO_2	Н	Н	48	94
f	Cl	nPr	NO_2	Н	Н	85 ^b	92
g	Н	Me	Н	NO_2	Н	34	90
h	Н	Me	Н	Н	NO ₂	43	92

¹ Yields of isolated products.

 b **3f** was prepared by chlorination of **3c**, conditions: NCS (1.0 equiv), CCl_4, 8 h, 75–80 $^\circ\text{C}.$

The TiCl₄-mediated cyclization of **4a** with 1,3-bis(trimethylsilyloxy)-1,3-butadiene **5a**, prepared in two steps from methyl 3-oxopentanoate,²² afforded the nitro-substituted biaryl **6a**. The formation of the product can be explained by the mechanism depicted in Scheme 2. During optimization, it proved to be important to carry out the reactions in a highly concentrated solution. We have observed earlier that employment of other Lewis acids results in a decrease of the yield of [3+3] cyclocondensation reactions. It is important to be noted that the cyclization proceeded with very good regioselectivity.

Scheme 2. Possible mechanism of the formation of **6a**; i: TiCl₄, CH₂Cl₂, $-78 \rightarrow 20$ °C, 18 h.

The TiCl₄-mediated cyclization of **4a–f** with 1,3-bis(trimethylsilyloxy)-1,3-butadienes **5a–f**, readily available in two steps from the corresponding β -ketoesters,²² afforded the nitro-substituted biaryls **6a–s** (Scheme 3, Table 2). All cyclizations proceeded with very good regioselectivity. The moderate yields can be explained by competing, TiCl₄-mediated oxidative dimerization of the 1,3-bis(silyloxy)-1,3-

Scheme 3. Synthesis of 6a–s and 7a–s; i: TiCl₄, CH₂Cl₂, $-78 \rightarrow 20$ °C, 18 h ii: H₂, Pd/C (10 mol %), 20 °C, 48 h.

Table 2Synthesis of 6a-s and 7a-s

	-	67	D 1	D ²	D 3	D 4	0((C))	0((=)3
4	5	6,7	K.	K2	K ³	K.	% (b)"	% (7)"
a	а	a	Me	Н	Me	Н	36	64
а	b	b	Me	Me	Me	Н	41	52
a	с	с	Et	Et	Me	Н	35	70
а	f	d	Me	nOct	Me	Н	40	69
b	а	e	Me	Н	Et	Н	43	75
b	b	f	Me	Me	Et	Н	42	53
b	с	g	Et	Et	Et	Н	38	52
b	d	h	Me	nHex	Et	Н	41	51
b	е	i	Me	<i>n</i> Hept	Et	Н	39	49
b	f	j	Me	nOct	Et	Н	38	50
с	а	k	Me	Н	nPr	Н	48	56
с	b	1	Me	Me	nPr	Н	38	50
с	с	m	Et	Et	nPr	Н	37	63
с	d	n	Me	nHex	nPr	Н	25	74
d	а	0	Me	Н	nBu	Н	42	70
d	b	р	Me	Me	nBu	Н	39	54
d	d	q	Me	nHex	nBu	Н	38	50
e	d	r	Me	nHex	Et	Me	38	50
f	а	s	Me	Н	nPr	Cl	55	49

^a Yields of isolated products.

butadiene and by partial hydrolysis of the starting materials during the reaction. No clear trend is observed for the yield with respect to the influence of the substitution pattern. The Pd/C-catalyzed hydrogenation of **6a–s** directly afforded the 6(5*H*)-phenanthridinones **7a–s** in good yields (Scheme 3, Table 2). The configuration of all products was established by spectroscopic methods.

The TiCl₄-mediated cyclization of **4g** with 1,3-bis(trimethylsilyloxy)-1,3-butadienes **5b,c** afforded the 3-nitro-3'-hydroxybiaryls **6t,u** (Scheme 4, Table 3). The hydrogenation of **6t** and **6u** afforded the 3-amino-3'-hydroxy-biphenyls **8a** and **8b**.

Scheme 4. Synthesis of **6t**,**u** and **8a**,**b**; *i*: TiCl₄, CH₂Cl₂, $-78 \rightarrow 20$ °C, 18 h ii: H₂, Pd/C (10 mol %), 20 °C, 48 h.

Tuble 3

Synthesis of 6t.u and	d 8a.	b
------------------------------	-------	---

5	6	8	R ¹	R ²	% (6) ^a	% (8) ^a
b	t	a	Me	Me	50	81
с	u	b	Et	Et	37	78

^a Yields of isolated products.

The TiCl₄-mediated cyclization of **4h** with 1,3-bis (trimethylsilyloxy)-1,3-butadienes **5a–c** afforded the 4-nitro-3'-hydroxy-biaryls **6v–x** (Scheme 5, Table 4).

Aryl phenolates **12a–c** were prepared from aroyl chlorides **9a–c** according to the literature.²⁷ The reaction of **10a–c** with nitromethane, following a known procedure,²⁸ gave the α -nitroacetophenones **11a–c** (Scheme 6). The reaction of the latter with triethyl orthoformate and acetic anhydride afforded the 3-ethoxy-2-nitro-2-en-1-ones **12a–c**.

Scheme 5. Synthesis of 6v–x; i: TiCl₄, CH₂Cl₂, $-78 \rightarrow 20$ °C, 18 h ii: H₂, Pd/C (10 mol %), 20 °C, 48 h.

Table	4		
Synth	esis	of	6v-2

5	6	R ¹	R ²	% (6) ^a
a	v	Me	Н	36
b	w	Me	Me	46
c	x	Et	Et	33

^a Yields of isolated products.

Scheme 6. Synthesis of **12a**–**c**; i: PhOH (1.0 equiv), **9a**–**c** (1.03 equiv), 60 °C; ii: CH₃NO₂ (1.0 equiv), **10a**–**c** (0.33 equiv), *t*-BuOK (1.0 equiv), urea (equiv) DMSO, 12 h, 0–10 °C; iii: **11a**–**c** (1.0 equiv), Ac₂O (1.0 equiv), HC(OEt)₃ (1.2 equiv), 120 °C, 6 h.

Scheme 7. Synthesis of **14a–i**; i: TiCl₄, CH₂Cl₂, −78 → 20 °C, 18 h, *ii*: H₂, Pd/C (10 mol %), 20 °C, 48 h.

Table 5		
Synthesis	of	14a-i

T-1-1- F

12	5	13,14	Ar	\mathbb{R}^1	R ²	% (13) ^a	% (14) ^a
a	a	a	Ph	Me	Н	56	86
a	b	b	Ph	Me	Me	57	85
a	с	с	Ph	Et	Et	65	95
a	k	d	Ph	Me	nBu	58	92
a	f	e	Ph	Me	nOct	62	90
b	а	f	2-MeC ₆ H ₄	Me	Н	68	91
b	b	g	2-MeC ₆ H ₄	Me	Me	72	89
с	а	h	2-ClC ₆ H ₄	Me	Н	56	88
с	b	i	2-ClC ₆ H ₄	Me	Me	70	90

^a Yields of isolated products.

The TiCl₄-mediated cyclization of 3-ethoxy-2-nitro-2-en-1-ones **12a**-**c** with 1,3-bis(trimethylsilyloxy)-1,3-butadienes **5a**-**c**,**k**,**f** afforded the 4-nitrophenols **13a**-**i** in 56–72% yield (Scheme 7, Table 5). The yields of the products derived from dienes **5b**,**c**,**k**,**f**, containing a substituent located at carbon atom C-4 of the diene, were higher than those derived from **5a**. The hydrogenation of 4-nitrophenols **13a**-**i**, in the presence of catalytic amounts of Pd/C (10 mol%), afforded the 4-aminophenols **14a**-**i** in excellent yields.

3. Conclusions

In conclusion, we have reported a regioselective approach to functionalized nitro- and amino-substituted biaryls and of 6(5*H*)-phenanthridinones by [3+3]cyclocondensation of 1,3-bis-(trimethylsilyloxy)-1,3-butadienes with nitro-substituted 1-aryl-1-silyloxy-1-en-3-ones and subsequent hydrogenation. We have also reported the synthesis of 4-nitro- and 4-aminophenols based on formal [3+3] cyclizations of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 3-ethoxy-2-nitro-2-en-1-ones. The products are not readily available by other methods.

4. Experimental section

4.1. General comments

All solvents were dried by standard methods and all reactions were carried out under an Argon atmosphere. For ¹H and ¹³C NMR spectra the deuterated solvents indicated were used. Mass spectrometric data (MS) were obtained by electron ionization (EI, 70 eV), chemical ionization (CI, isobutane) or electrospray ionization (ESI). For preparative scale chromatography silica gel 60 (0.063–0.200 mm, 70–230 mesh) was used.

4.2. General procedure for the synthesis of 1,3-dicarbonyl compounds 3a-h

To a stirred solution of LDA (75.0 mmol) in THF (1.2 mL/ 1.0 mmol of LDA) was added ketone **1a–e** (50.0 mmol) at -78 °C. After stirring of the solution for 1 h, **2a–c** (60.0 mmol) was added. The temperature of the solution was allowed to rise to 20 °C during 12 h. A saturated aqueous solution of NH₄Cl was added, the layers were separated, and the aqueous layer was extracted with EtOAc (3×50 mL). The combined organic layers were dried (Na₂SO₄) and filtered, and the solvent was removed in vacuo. The residue was purified by chromatography (silica gel, *n*-heptane/EtOAc = 30:1 \rightarrow 20:1) to give **3**. Compounds **1a–e** and **2a–c** are commercially available.

4.2.1. 4-Hydroxy-4-(2-nitrophenyl)but-3-en-2-one (**3a**). Starting with LDA (1.5 equiv) in THF (62 mL), **1a** (2.9 mL, 50.0 mmol), and **2a** (7.9 mL, 60.0 mmol), **3a** was isolated as a red to yellow oil (5.405 g, 54%). ¹H NMR (250 MHz, CDCl₃): δ =2.19 (s, 3H, CH₃), 6.16 (s, 1H, CH), 7.45–7.60 (m, 3H, CH_{Ar}), 7.82 (m, 1H, CH_{Ar}), 15.12 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ =24.2 (CH₃), 99.9 (CH), 124.3, 129.3, 130.0, 133.0 (CH_{Ar}), 134.7, 147.8, (C_{Ar}), 187.1 (COH), 190.2 (C=O). MS (EI 70 eV): *m*/*z* (%)=207 ([M]⁺, 38), 192 (100), 160 (19), 150 (36), 120 (8), 89 (9), 85 (27), 76 (18), 43 (45). HRMS (EI): Calcd for C₁₀H₉O₄N: 207.05261; found: 207.05232.

4.2.2. 1-Hydroxy-1-(2-nitrophenyl)pent-1-en-3-one (**3b**). Starting with LDA (1.5 equiv) in THF (62 mL), **1b** (4.5 mL, 50.0 mmol), and **2a** (7.9 mL, 60.0 mmol), **3b** was isolated as a yellowish solid (11.93 g, 45%), mp=58–60 °C. ¹H NMR (250 MHz, CDCl₃): δ =1.10 (t, ³*J*=7.7 Hz, 3H, CH₂CH₃), 2.58 (q, ³*J*=7.1 Hz, 2H, CH₂CH₃), 5.73 (s, 1H, CH), 7.45–7.55 (m, 3H, CH_{Ar}), 7.80–7.83 (m, 1H, CH_{Ar}), 15.10 (br s, 1H, OH).¹³C NMR (75 MHz, CDCl₃): δ =9.6 (CH₃), 31.5 (CH₂), 98.5 (CH),

124.4, 129.1, 130.8, 132.8 (CH_{Ar}), 134.2, 148.1 (C_{Ar}), 186.6 (COH), 194.5 (CO). MS (EI 70 eV): m/z (%)=221 ([M]⁺, 2), 151 (11), 150 (100), 136 (24), 135 (24), 134 (11), 104 (16), 92 (17), 79 (10), 77 (14), 76 (18), 57 (43), 51 (16), 43 (300). HRMS (EI): Calcd for C₁₁H₁₁O₄N: 221.06826; found: 221.068437.

4.2.3. 1-Hydroxy-1-(2-nitrophenyl)hex-1-en-3-one (**3c**). Starting with LDA (1.5 equiv) in THF (62 mL), **1c** (5.3 mL, 50.0 mmol), and **2a** (7.9 mL, 60.0 mmol), **3c** was isolated as a yellowish oil (5.98 g, 46%). ¹H NMR (250 MHz, CDCl₃): δ =1.12 (t, ³*J*=7.6 Hz, 3H, CH₂CH₂CH₃), 1.40–1.45 (m, 2H, CH₂CH₂CH₃), 2.40 (t, ³*J*=7.4 Hz, 2H, CH₂CH₂CH₃), 5.70 (s, 1H, CH), 7.46–7.56 (m, 3H, CH_{Ar}), 7.83–7.86 (m, 1H, CH_{Ar}), 15.12 (br s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ =13.5 (CH₃), 18.5, 32.5 (CH₂), 98.4 (CH), 124.4, 129.2, 130.9, 132.9 (CH_{Ar}), 134.1, 148.1 (C_{Ar}), 186.5 (COH), 194.6 (CO).

4.2.4. 1-Hydroxy-1-(2-nitrophenyl)hept-1-en-3-one (**3d**). Starting with LDA (1.5 equiv) in THF (62 mL), **1d** (6.2 mL, 50.0 mmol), and **2a** (7.9 mL, 60.0 mmol), **3d** was isolated as a red to yellow oil (5.98 g, 40%). ¹H NMR (250 MHz, CDCl₃): δ =0.95 (t, ³*J*=7.4 Hz, 3H, CH₂CH₂CH₂CH₃), 1.35–1.44 (m, 2H, CH₂), 1.59–1.70 (m, 2H, CH₂), 2.38 (t, ³*J*=7.8 Hz, 2H, CH₂CH₂CH₂CH₃), 5.79 (s, 1H, CH), 7.54–7.64 (m, 3H, CH_{Ar}), 7.90–7.93 (m, 1H, CH_{Ar}), 15.24 (br s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ =13.7 (CH₃), 22.2, 27.8, 37.5 (CH₂), 99.1 (CH), 124.4, 129.1, 131.0, 132.8 (CH_{Ar}), 134.6, 147.8 (C_{Ar}), 186.9 (COH), 193.2 (CO).

4.2.5. 2-Methyl-1-(2-nitrophenyl)pentane-1,3-dione (**3e**). Starting with LDA (1.5 equiv) in THF (24 mL), **1e** (2.1 mL, 20.0 mmol), and **2a** (3.2 mL, 24.0 mmol), **3e** was isolated as a red to yellow oil (2.70 g, 48%). ¹H NMR (250 MHz, CDCl₃): δ =1.12 (t, ³*J*=7.0 Hz, 3H, CH₂CH₃), 1.41 (d, ³*J*=6.7 Hz, 3H, CH₃CHCOC₂H₅), 2.46 (q, ³*J*=7.3 Hz, 2H, CH₂CH₃), 4.04 (q, ³*J*=7.1 Hz, 1H, CHCH₃), 7.34–7.67 (m, 3H, CH₄), 8.05–8.08 (m, 1H, CH₄r). ¹³C NMR (75 MHz, CDCl₃): δ =7.5, 13.6 (CH₃), 34.9 (CH₂), 60.0 (CH), 124.3, 128.4, 130.6, 134.6 (CH₄r), 137.0, 145.4 (C₄r), 196.3, 207.6 (CO). MS (EI 70 eV): *m/z* (%)=235 ([M]⁺, 2), 151 (10), 150 (78), 136 (15), 135 (13), 104 (13), 92 (12), 79 (13), 77 (16), 76 (31), 57 (100), 51 (22), 50 (14), 43 (9), 29 (25). HRMS (EI): Calcd for C₁₂H₁₃NO4: 235.08391; found: 235.083664.

4.2.6. 2-Chloro-1-(2-nitrophenyl)hexane-1,3-dione (**3f**). A mixture of **3c** (2.00 g, 8.5 mmol) and of NCS (1.04 g, 7.8 mmol) in CCl₄ (18 mL) was heated under reflux for 8 h. After cooling, the precipitate of succinimide was filtered off and water was added, the layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (3×150 mL). The combined organic layers were dried (Na₂SO₄) and filtered, and the solvent was removed in vacuo. The residue was purified by chromatography (silica gel, *n*-heptane/EtOAc, 30:1→20:1) to give **3f** as a yellowish oil (1.95 g, 85%). ¹H NMR (CDCl₃, 250 MHz): δ =0.96 (t, ³*J*=7.1 Hz, 3H, CH₂CH₂CH₃), 1.61–1.73 (m, 2H, CH₂CH₂CH₃), 2.55 (t, ³*J*=7.4 Hz, 2H, CH₂CH₂CH₃), 5.23 (s, 1H, CH), 7.53–7.78 (m, 3H, CH_{Ar}), 8.23–8.27 (m, 1H, CH_{Ar}). ¹³C NMR (CDCl₃, 75 MHz): δ =13.7 (CH₃), 18.6, 37.3 (CH₂), 69.6 (CH), 124.4, 130.0, 131.7, 134.9 (CH_{Ar}), 139.5, 145.4 (C_{Ar}), 189.5, 199.8 (CO).

4.2.7. 4-Hydroxy-4-(4-nitrophenyl)but-3-en-2-one (**3h**). Starting with LDA (1.5 equiv) in THF (62 mL), **1a** (2.9 mL, 50.0 mmol), and **2c** (11.130 g, 60.0 mmol), **3h** was isolated as a yellow solid (4.405 g, 43%), mp=54-56 °C. ¹H NMR (300 MHz, CDCl₃): δ =2.11 (s, 3H, CH₃), 5.74 (s, 1H, CH), 7.95 (d, ³*J*=8.7 Hz, 2H, CH_{Ar}), 8.21 (d, ³*J*=9.0 Hz, 2H, CH_{Ar}), 15.80 (s, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ =27.0 (CH₃), 98.5 (CH), 124.3 (2CH_{Ar}), 128.6 (2CH_{Ar}), 140.9, 149.9 (C_{Ar}), 179.8 (COH), 196.6 (C=O). GC-MS (EI 70 eV): *m/z* (%)=207 ([M]⁺, 38), 192 (100), 165 (8), 160 (19), 150 (36), 120 (8), 104 (18), 89 (9), 85 (27), 76 (18), 63 (7), 50

(12), 43 (45). HRMS (EI): Calcd for $C_{10}H_9NO_4{:}$ 207.05261; found: 207.05232.

4.3. General procedure for the synthesis of silyl enol ethers **4a-h** and **10**

To a stirred benzene solution (2.5 mL/1.0 mmol of **3** or **9**) of **3** or **9** (10.0 mmol) was added triethylamine (16.0 mmol). After stirring of the solution for 2 h, trimethylchlorosilane (18.0 mmol) was added. After stirring of the solution for 72 h, the solvent was removed in vacuo and hexane (25 mL) was added to the residue to give a suspension. The latter was filtered under argon atmosphere. The filtrate was concentrated in vacuo to give silyl enol ethers **4a–h** or **10**. Due to the unstable nature of the silyl enol ethers, they were characterized only by NMR spectroscopy. All products exist as mixtures of *E*/*Z* isomers.

4.3.1. 4-(2-Nitrophenyl)-4-(trimethylsilyloxy)but-3-en-2-one (**4a**). Starting with benzene (90.0 mL), **3a** (6.121 g, 29.5 mmol), triethylamine (6.6 mL, 47.2 mmol) and trimethylchlorosilane (6.7 mL, 53.2 mmol), **4a** was isolated as a reddish oil (7.30 g, 91%). ¹H NMR (300 MHz, CDCl₃): δ =0.05-0.30 (m, 9H, Si(CH₃)₃), 2.15 (s, 3H, CH₃), 6.06 (s, 1H, CH), 7.45-7.60 (m, 3H, CH_{Ar}), 7.82 (m, 1H, CH_{Ar}), ¹³C NMR (75 MHz, CDCl₃): δ =0.2 (Si(CH₃)₃), 24.5 (CH₃), 98.9 (CH), 124.9, 129.6, 130.5, 133.5 (CH_{Ar}), 134.9, 148.8, (C_{Ar}), 180.1 (C-OSiMe₃), 191.2 (C=O).

4.3.2. 1-(2-Nitrophenyl)-1-(trimethylsilyloxy)pent-1-en-3-one(**4b**). Starting with benzene (52.0 mL), **3b** (4.62 g, 20.9 mmol), triethylamine (4.6 mL, 33.4 mmol) and trimethylchlorosilane (4.7 mL, 37.6 mmol), **4b** was isolated as a reddish oil (5.80 g, 95%). ¹H NMR (250 MHz, CDCl₃): δ =0.21-0.31 (m, 9H, Si(CH₃)₃), 0.98 (t, ³*J*=7.6 Hz, 3H, CH₂CH₃), 2.58 (q, ³*J*=7.1 Hz, 2H, CH₂CH₃), 5.81 (s, 1H, CH), 7.44– 7.53 (m, 3H, CH_{Ar}), 7.80–7.83 (m, 1H, CH_{Ar}). ¹³C NMR (75 MHz, CDCl₃): δ =0.3 (Si(CH₃)₃), 7.8 (CH₃), 36.8 (CH₂), 98.4 (CH), 123.6, 127.9, 129.4, 131.9 (CH_{Ar}), 134.6, 145.0 (C_{Ar}), 177.4 (C–OSiMe₃), 198.5 (CO).

4.3.3. 1-(2-Nitrophenyl)-1-(trimethylsilyloxy)hex-1-en-3-one (**4c**). Starting with benzene (63.0 mL), **3c** (4.83 g, 20.2 mmol), triethylamine (4.5 mL, 43.0 mmol) and trimethylchlorosilane (4.6 mL, 33.1 mmol), **4c** was isolated as a reddish oil (5.60 g, 88%). ¹H NMR (250 MHz, CDCl₃): δ =0.21–0.43 (m, 9H, Si(CH₃)₃), 1.06–1.14 (m, 3H, CH₃), 1.69–1.85 (m, 2H, CH₂), 2.43–2.53 (m, 2H, CH₂), 5.85 (s, 1H, CH), 7.50–8.00 (m, 3H, CH_{Ar}), 8.07–8.19 (m, 1H, CH_{Ar}), ¹³C NMR (75 MHz, CDCl₃): δ =0.2 (Si(CH₃)₃), 1.38 (CH₃), 36.4, 39.5 (CH₂), 98.9 (CH), 124.1, 128.1, 129.3, 131.6 (CH_{Ar}), 139.4, 148.3, (C_{Ar}), 178.0 (C–OSiMe₃), 193.2 (C=O).

4.3.4. 1-(2-Nitrophenyl)-1-(trimethylsilyloxy)hept-1-en-3-one (**4d**). Starting with benzene (22.5 mL), **3d** (2.20 g, 8.9 mmol), triethylamine (2.0 mL, 14.2 mmol) and trimethylchlorosilane (2.0 mL, 16.0 mmol), **4d** was isolated as a reddish oil (2.66 g, 93%). ¹H NMR (250 MHz, CDCl₃): δ =0.24–0.27 (m, 9H, Si(CH₃)₃), 0.89 (t, ³*J*=7.6 Hz, 3H, CH₂CH₂CH₂CH₃), 1.31–1.38 (m, 2H, CH₂), 1.51–1.60 (m, 2H, CH₂), 2.34 (t, ³*J*=6.8 Hz, 2H, CH₂CH₂CH₂CH₃), 5.79 (s, 1H, CH), 7.53–7.65 (m, 3H, CH_{Ar}), 7.91–7.94 (m, 1H, CH_{Ar}). ¹³C NMR (75 MHz, CDCl₃): δ =0.3 (Si(CH₃)₃), 13.6 (CH₃), 22.1, 27.7, 37.4 (CH₂), 99.0 (CH), 124.1, 129.0, 131.1, 132.8 (CH_{Ar}), 133.4, 139.1 (C_{Ar}), 176.5 (C–OSiMe₃), 193.3 (CO).

4.3.5. 2-Methyl-1-(2-nitrophenyl)-1-(trimethylsilyloxy)pent-1-en-3one (**4e**). Starting with benzene (29.0 mL), **3e** (2.70 g, 11.5 mmol), triethylamine (2.6 mL, 18.4 mmol) and trimethylchlorosilane (2.6 mL, 20.7 mmol), **4e** was isolated as a yellowish oil (3.31 g, 94%). ¹H NMR (250 MHz, CDCl₃): δ =0.1-0.29 (m, 9H, Si(CH₃)₃), 0.88 (t, ³J=6.8 Hz, 3H, CH₂CH₃), 2.02 (s, 3H, CH₃), 2.36 (q, ³J=8.7 Hz, 2H, CH₂CH₃), 7.28–7.54 (m, 3H, CH_{Ar}), 8.00–8.03 (m, 1H, CH_{Ar}). ¹³C NMR (75 MHz, CDCl₃): δ =0.2 (Si(CH₃)₃), 7.1, 12.5 (CH₃), 34.0 (CH₂), 118.2 (C), 123.6, 128.9, 130.5, 132.6 (CH_{Ar}), 145.6, 152.9 (C_{Ar}), 168.5 (C–OSiMe₃), 202.8 (CO).

4.3.6. 2-Chloro-1-(2-nitrophenyl)-1-(trimethylsilyloxy)hex-1-en-3one (**4f**). Starting with benzene (52.0 mL), **3f** (1.95 g, 7.22 mmol), triethylamine (1.6 mL, 11.6 mmol) and trimethylchlorosilane (1.6 mL, 13.0 mmol), **4f** was isolated as a yellowish oil (2.27 g, 92%). ¹H NMR (250 MHz, CDCl₃): δ =0.10-0.23 (m, 9H, Si(CH₃)₃), 0.93 (t, ³J=7.4 Hz, 3H, CH₂CH₂CH₃), 1.58-1.69 (m, 2H, CH₂), 2.53 (t, ³J=7.6 Hz, 2H, CH₂CH₂CH₃), 7.42-7.63 (m, 3H, CH_{Ar}), 8.13-8.23 (m, 1H, CH_{Ar}). ¹³C NMR (75 MHz, CDCl₃): δ =0.1 (Si(CH₃)₃), 13.4 (CH₃), 18.2, 37.0 (CH₂), 108.9 (CCl), 124.2, 129.9, 131.2, 132.8 (CH_{Ar}), 143.2, 147.6 (C_{Ar}), 165.1 (C-OSiMe₃), 189.1 (CO).

4.3.7. 4-(4-Nitrophenyl)-4-(trimethylsilyloxy)but-3-en-2-one (**4h**). Starting with benzene (52.0 mL), **3h** (4.405 g, 21.3 mmol), triethylamine (4.7 mL, 33.0 mmol) and trimethylchlorosilane (5.1 mL, 37.8 mmol), **4h** was isolated as a yellow solid (5.350 g, 92%), mp=55-57 °C. ¹H NMR (300 MHz, CDCl₃): δ =0.02-0.22 (m, 9H, Si(CH₃)₃), 2.10 (s, 3H, CH₃), 6.08 (s, 1H, CH), 7.80-7.89 (m, 2H, CH_{Ar}), 8.09-8.17 (m, 2H, CH_{Ar}). ¹³C NMR (75 MHz, CDCl₃): δ =0.6 (Si(CH₃)₃), 24.6 (CH₃), 96.8 (CH), 121.5 (2CH_{Ar}), 125.9 (2CH_{Ar}), 138.4, 147.0 (C_{Ar}), 177.2 (C-OSiMe₃), 194.1 (C=0).

4.4. General procedure for the synthesis of salicylates 6a-x

To a CH₂Cl₂ solution of silyl enol ether **4** (1.0 equiv) and 1,3-bis-(silyl enol ether) **5** (1.1 equiv) was dropwise added TiCl₄ (1.1 equiv) at -78 °C under argon atmosphere. The solution was stirred at -78 °C for 30 min and then allowed to warm to 20 °C during 18 h. To the solution was added an aqueous solution of HCl (10%). The organic layer was separated and the aqueous layer was repeatedly extracted with CH₂Cl₂. The combined organic extracts were dried (Na₂SO₄) and filtered. The filtrate was concentrated in vacuo and the residue was purified by chromatography (silica gel, *n*-hexane/EtOAc) to give salicylates **6**.

4.4.1. *Methyl* 3-hydroxy-5-methyl-2'-nitro[1,1'-biphenyl]-2-carboxylate (**6a**). Starting with **5a** (1.145 g, 4.4 mmol), TiCl₄ (0.835 g, 4.4 mmol), CH₂Cl₂ (6 mL) and **4a** (1.117 g, 4.0 mmol), **6a** was isolated (0.420 g, 36%) as a yellowish oil. ¹H NMR (CDCl₃, 250 MHz): δ =2.21 (s, 3H, CH₃), 3.33 (s, 3H, OCH₃), 6.35 (d, ⁴*J*=1.9 Hz, 1H, CH_{Ar}), 6.74 (d, ⁴*J*=1.4 Hz, 1H, CH_{Ar}), 7.10–7.13 (m, 1H, CH_{Ar}), 7.36 (ddd, ³*J*=7.4 Hz, ³*J*=7.2 Hz, ⁴*J*=1.4 Hz, 1H, CH_{Ar}), 7.47 (ddd, ³*J*=7.5 Hz, ³*J*=7.4 Hz, ⁴*J*=1.5 Hz, 1H, CH_{Ar}), 7.92 (dd, ³*J*=8.0 Hz, ⁴*J*=1.5 Hz, 1H, Ar), 11.10 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ_C =21.6 (CH₃), 51.9 (OCH₃), 108.4 (C_{Ar}), 118.0, 122.5, 123.6, 127.8, 131.1. 132.4 (CH_{Ar}), 138.2, 140.2, 145.6, 147.8, 162.4 (C_{Ar}), 170.4 (C=O). GC–MS (EI, 70 eV): *m/z* (%)=287 ([M]⁺, 26), 255 (100), 227 (27), 197 (5), 181 (11), 152 (30), 115 (5), 76 (7). HRMS (EI): Calcd for C₁₅H₁₃NO₅: 287.07882; found: 287.07873.

4.4.2. Methyl 3-hydroxy-4,5-dimethyl-2'-nitrobiphenyl-2-carboxylate (**6b**). Starting with **5b** (1.207 g, 4.4 mmol), TiCl₄ (0.834 g, 4.4 mmol), CH₂Cl₂ (8 mL), and **4a** (1.117 g, 4.0 mmol), **6b** was isolated (0.500 g, 41%) as a yellow oil. ¹H NMR (CDCl₃, 250 MHz): δ =2.10 (s, 3H, CH₃), 2.16 (s, 3H, CH₃), 3.32 (s, 3H, OCH₃), 6.35 (s, 1H, CH_{Ar}), 7.11 (dd, ³*J*=7.5 Hz, ⁴*J*=1.6 Hz, 1H, CH_{Ar}), 7.33 (ddd, ³*J*=7.7 Hz, ³*J*=7.6 Hz, ⁴*J*=1.5 Hz, 1H, CH_{Ar}), 7.46 (ddd, ³*J*=7.6 Hz, ³*J*=7.5 Hz, ⁴*J*=1.3 Hz, 1H, CH_{Ar}), 7.88 (dd, ³*J*=8.3 Hz, ⁴*J*=1.4 Hz, 1H, CH_{Ar}), 11.47 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ_{C} =11.5, 20.5 (CH₃), 51.9 (OCH₃), 108.0 (C_{Ar}), 122.6, 123.5, (CH_{Ar}), 125.0 (C_{Ar}), 127.6, 131.2, 132.3 (CH_{Ar}), 136.9, 138.5, 143.6, 148.0, 160.5 (C_{Ar}), 171.4 (C=O). GC-MS (EI, 70 eV): *m/z* (%)=301 ([M]⁺, 64), 269 (100), 255 (24), 224 (27), 208 (48), 195 (13), 180 (49), 165 (29), 152 (28), 128 (11), 115 (16), 77 (7). HRMS (EI): Calcd for $C_{16}H_{15}NO_5$: 301.09447; found: 301.09434.

4.4.3. Ethyl 4-ethyl-3-hydroxy-5-methyl-2'-nitrobiphenyl-2-carboxylate (**6c**). Starting with **5c** (0.998 g, 3.3 mmol), TiCl₄ (0.625 g, 3.3 mmol), CH₂Cl₂ (6 mL), and **4a** (0.789 g, 3.0 mmol), **6c** was isolated (0.350 g, 35%) as a yellow solid, mp=80-82 °C. ¹H NMR (CDCl₃, 250 MHz): δ =0.59 (t, ³*J*=7.4 Hz, 3H, CH₃), 1.04 (t, ³*J*=7.5 Hz, 3H, CH₃), 2.19 (s, 3H, CH₃), 2.61 (m, 2H, CH₂), 3.82 (q, ³*J*=7.5 Hz, 2H, OCH₂), 6.32 (s, 1H, CH_{Ar}), 7.12 (dd, ³*J*=7.5 Hz, ⁴*J*=1.5 Hz, 1H, CH_{Ar}), 7.34 (ddd, ³*J*=8.0 Hz, ³*J*=7.5 Hz, ⁴*J*=1.5 Hz, 1H, CH_{Ar}), 7.45 (ddd, ³*J*=7.5 Hz, ³*J*=7.5 Hz, ⁴*J*=1.5 Hz, 1H, CH_{Ar}), 7.88 (dd, ³*J*=7.6 Hz, ⁴*J*=1.6 Hz, 1H, CH_{Ar}), 11.58 (s, 1H, OH). ¹³C NMR (CDCl₃, 62 MHz): δ_{C} =4.8, 14.8, 21.3 (CH₃), 21.5 (CH₂), 62.8 (OCH₂), 110.0 (C_{Ar}), 124.6, 125.5, 129.4 (CH_{Ar}), 132.8 (C_{Ar}), 133.1, 134.1 (CH_{Ar}), 138.8, 140.8, 144.5, 149.9, 162.5 (C_{Ar}), 172.5 (C=O). GC-MS (EI, 70 eV): *m*/*z* (%)=329 ([M]⁺, 100), 283 (80), 255 (24), 238 (32), 222 (78), 207 (40), 194 (99), 165 (64), 152 (29), 139 (13), 115 (18), 77 (13). HRMS (EI): Calcd for C₁₈H₁₉NO₅: 329.12577; found: 329.12546.

4.4.4. Methyl 3-hydroxy-5-methyl-2'-nitro-4-octylbiphenyl-2-carboxylate (6d). Starting with 5f (1.100 g, 3.3 mmol), TiCl₄ (0.625 g, 3.3 mmol), CH₂Cl₂ (6 mL) and 4a (0.789 g, 3.0 mmol), 6d was isolated (0.476 g, 40%) as a yellow viscous oil. ¹H NMR (CDCl₃, 250 MHz): δ=0.73–0.79 (m, 3H, CH₃), 1.13–1.30 (m, 12H, CH₂), 2.18 (s, 3H, CH₃), 2.52-2.60 (m, 2H, CH₂), 3.31 (s, 3H, OCH₃), 6.32 (s, 1H, CH_{Ar}), 7.11 (dd, ³*J*=7.5 Hz, ⁴*J*=1.2 Hz, 1H, CH_{Ar}), 7.33 (ddd, ³*J*=8.0 Hz, ${}^{3}J=7.7$ Hz, ${}^{4}J=1.3$ Hz, 1H, CH_{Ar}), 7.45 (ddd, ${}^{3}J=7.4$ Hz, ${}^{3}J=7.1$ Hz, ⁴J=1.6 Hz, 1H, CH_{Ar}), 7.88 (dd, ³J=7.5 Hz, ⁴J=1.5 Hz, 1H, CH_{Ar}), 11.43 (s, 1H, OH). ¹³C NMR (CDCl₃, 62 MHz): δ_{C} =16.0, 21.8 (CH₃), 24.6, 28.3, 30.6, 31.2, 31.4, 32.0, 33.8 (CH₂), 53.8 (OCH₃), 110.0 (C_{Ar}), 124.8, 125.4, 129.5 (CHAr), 131.8 (CAr), 133.2, 134.1 (CHAr), 138.9, 140.5, 144.5, 150.0, 162.5 (C_{Ar}), 172.9 (C=O). GC-MS (EI, 70 eV): m/z (%)=399 $([M]^+, 100), 353(49), 340(13), 306(17), 268(69), 225(84), 208(80),$ 194 (58), 180 (27), 165 (65), 152 (21), 115 (10), 77 (5), 43 (18). HRMS (EI): Calcd for C₂₃H₂₉NO₅: 399.20402; found: 399.20336.

4.4.5. Methyl 5-ethyl-3-hydroxy-2'-nitrobiphenyl-2-carboxylate (6e). Starting with **5a** (1.720 g, 6.6 mmol), TiCl₄ (1.251 g, 6.6 mmol), CH₂Cl₂ (12 mL) and **4b** (1.760 g, 6.0 mmol), **6e** was isolated (0.780 g, 43%) as a yellowish oil. ¹H NMR (CDCl₃, 250 MHz): δ =1.05 (t, ³J=7.5 Hz, 3H, CH₂CH₃), 2.45 (q, ³J=7.5 Hz, 2H, CH₂CH₃), 3.27 (s, 3H, OCH₃), 6.31 (d, ${}^{4}J$ =2.0 Hz, 1H, CH_{Ar}), 6.70 (d, ${}^{4}J$ =1.7 Hz, 1H, CH_{Ar}), 7.07 (dd, ${}^{3}J=7.7$ Hz, ${}^{4}J=1.3$ Hz, 1H, CH_{Ar}), 7.31 (ddd, ${}^{3}J=7.0$ Hz, ${}^{3}J$ =7.0 Hz, ${}^{4}J$ =1.5 Hz, 1H, CH_{Ar}), 7.43 (ddd, ${}^{3}J$ =7.5 Hz, ${}^{3}J$ =7.5 Hz, ⁴*J*=1.5 Hz, 1H, CH_{Ar}), 7.87 (dd, ³*J*=8.4 Hz, ⁴*J*=1.3 Hz, 1H, CH_{Ar}), 11.05 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ=14.6 (CH₃), 28.9 (CH₂), 52.4 (OCH3), 108.8 (CCOOCH3), 117.2, 121.5, 123.8, 127.8, 131.3, 132.5 (CHAr), 138.5, 140.4, 148.1, 151.8, 162.8 (CAr), 170.4 (CO). IR (neat, cm^{-1}): $\tilde{\nu}=3022 (w), 2949 (w), 2872 (w), 1659 (s), 1607 (m), 1571 (m),$ 1522 (s), 1436 (m), 1417 (w), 1386 (w), 1344 (s), 1272 (m), 1211 (s), 1160 (m), 1145 (m), 1102 (m), 1039 (w), 947 (w), 870 (w), 804 (m), 743 (s), 688 (s), 635 (m), 544 (w). GC–MS (EI, 70 eV): m/z (%)=301 ([M]⁺, 45), 270 (15), 269 (86), 256 (17), 255 (100), 242 (14), 241 (16), 240 (18), 213 (18), 198 (10), 197 (17), 196 (14), 195 (21), 181 (14), 180 (12), 170 (16), 168 (16), 167 (16), 166 (10), 165 (26), 153 (12), 152 (36), 151 (14), 139 (15), 128 (12), 127 (11), 115 (24), 77 (11), 76 (10). HRMS (EI): Calcd for C₁₆H₁₅NO₅: 301.09447; found: 301.094496.

4.4.6. Methyl 5-ethyl-3-hydroxy-4-methyl-2'-nitrobiphenyl-2-carboxylate (**6f**). Starting with **5b** (1.207 g, 4.4 mmol), TiCl₄ (0.834 g, 4.4 mmol), CH₂Cl₂ (8 mL) and **4b** (1.170 g, 4.0 mmol), **6f** was isolated (0.530 g, 42%) as a yellowish oil. ¹H NMR (CDCl₃, 250 MHz): δ =1.05 (t, ³*J*=7.4 Hz, 3H, CH₂CH₃), 2.12 (s, 3H, CH₃), 2.52 (q, ³*J*=7.5 Hz, 2H, CH₂CH₃), 3.32 (s, 3H, OCH₃), 6.35 (s, 1H, CH_{Ar}), 7.12 (dd, ³*J*=7.3 Hz, ⁴*J*=1.4 Hz, 1H, CH_{Ar}), 7.34 (ddd, ³*J*=7.6 Hz, ³*J*=7.6 Hz, ⁴*J*=1.8 Hz, 1H, CH_{Ar}), 7.46 (ddd, ³*J*=7.3 Hz, ³*J*=7.3 Hz, ⁴*J*=1.6 Hz, 1H, CH_{Ar}), 7.90 (dd, ³*J*=8.3 Hz, ⁴*J*=1.4 Hz, 1H, CH_{Ar}), 11.48 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ =11.0, 14.1 (CH₃), 27.0 (CH₂), 51.9 (OCH₃), 108.0 (CCOOCH₃), 121.0, 123.5, 124.4, 127.6, 131.3, 132.6 (CH_{Ar}), 137.1, 138.7, 143.3, 149.2, 160.8 (C_{Ar}), 170.4 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3065 (w), 2967 (w), 2874 (w), 1659 (s), 1606 (m), 1567 (m), 1522 (s), 1437 (m), 1397 (m), 1345 (s), 1269 (s), 1214 (m), 1173 (m), 1144 (m), 1108 (w), 1044 (w), 927 (w), 867 (w), 809 (m), 730 (s), 683 (m), 632 (w), 605 (w). GC-MS (EI, 70 eV): *m/z* (%)=315 ([M]⁺, 59), 284 (19), 283 (100), 269 (21), 254 (12), 238 (28), 224 (22), 222 (20), 195 (10), 194 (38), 193 (10), 181 (10), 178 (10), 168 (10), 167 (16), 166 (12), 165 (32), 153 (10), 152 (20), 151 (9), 139 (10), 128 (9), 127 (8), 115 (12), 77 (8), 76 (7). HRMS (EI): Calcd for C₁₇H₁₇NO₅: 315.11012; found: 315.110575.

4.4.7. Ethyl 4,5-diethyl-3-hydroxy-2'-nitrobiphenyl-2-carboxylate (**6g**). Starting with **5c** (1.996 g, 6.6 mmol), TiCl₄ (1.251 g, 6.6 mmol), CH₂Cl₂ (12 mL) and **4b** (1.760 g, 6.0 mmol), **6g** was isolated (0.782 g, 38%) as a yellowish oil. ^1H NMR (CDCl₃, 250 MHz): $\delta{=}0.54{-}0.62$ (m, 6H, 2×CH₂CH₃), 1.10 (t, ³J=6.9 Hz, 3H, OCH₂CH₃), 2.52 (q, ³J=7.7 Hz, 2H, CH₂CH₃), 2.65 (q, ³J=7.7 Hz, 2H, CH₂CH₃), 3.76 (q, ³J=7.5 Hz, 2H, OCH₂CH₃), 6.34 (s, 1H, CH_{Ar}), 6.99 (dd, ³J=7.4 Hz, ⁴J=1.3 Hz, 1H, CH_{Ar}), 7.34 (ddd, ${}^{3}J$ =7.3 Hz, ${}^{3}J$ =7.2 Hz, ${}^{4}J$ =1.4 Hz, 1H, CH_{Ar}), 7.42 (ddd, ${}^{3}J$ =7.5 Hz, ${}^{3}J$ =7.5 Hz, ${}^{4}J$ =1.5 Hz, 1H, CH_{Ar}), 7.94 (dd, ${}^{3}J$ =7.9 Hz, ⁴J=1.4 Hz, 1H, CH_{Ar}), 11.43 (s, 1H, OH). ¹³C NMR (CDCl₃, 62 MHz): δ =13.3, 13.8, 17.2 (CH₃), 19.0, 19.8 (CH₂), 60.9 (OCH₂), 108.0 (CCOOC₂H₅), 124.1, 123.8, 127.4, 131.2, 132.6 (CH_{Ar}), 125.8, 135.4, 137.1, 142.6, 148.5, 158.4 (C_{Ar}), 170.7 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3066 (w), 2965 (w), 2873 (w), 1656 (m), 1606 (m), 1563 (w), 1525 (s), 1463 (w), 1396 (m), 1347 (m), 1276 (s), 1212 (m), 1177 (m), 1111 (w), 1056 (w), 906 (w), 838 (s), 784 (m), 680 (m), 649 (w), 632 (w). GC-MS (EI, 70 eV): m/z (%)=344 ([M]⁺+1, 25), 343 ([M]⁺, 100), 298 (11), 297 (52), 280 (10), 270 (11), 269 (20), 253 (16), 252 (35), 250 (11), 238 (16), 237 (16), 235 (16), 234 (18), 224 (17), 222 (11), 221 (24), 220 (49), 218 (11), 210 (11), 208 (56), 207 (63), 206 (26), 196 (11), 194 (18), 193 (25), 192 (15), 181 (21), 180 (29), 178 (25), 168 (12), 167 (20), 166 (14), 165 (47), 153 (12), 152 (25), 151 (10), 139 (11), 128 (12), 115 (14), 77 (11), 29 (20). HRMS (EI): Calcd for C₁₉H₂₁NO₅: 343.14142; found: 343.141422.

4.4.8. Methyl 5-ethyl-4-hexyl-3-hydroxy-2'-nitrobiphenyl-2-carboxylate (6h). Starting with 5d (1.516 g, 4.4 mmol), TiCl₄ (0.834 g, 4.4 mmol), CH₂Cl₂ (8 mL) and 4b (1.170 g, 4.0 mmol), 6h was isolated (0.631 g, 41%) as a yellowish oil. ¹H NMR (CDCl₃, 250 MHz): $\delta = 0.78$ (t, ³J=7.3 Hz, 3H, (CH₂)₅CH₃), 1.06 (t, ³J=7.6 Hz, 3H, CH₂CH₃), 1.08-1.14 (m, 8H, 4×CH₂), 2.46 (q, ³*J*=7.2 Hz, 2H, *CH*₂CH₃), 2.48-2.52 (m, 2H, CH₂), 3.32 (s, 3H, OCH₃), 6.35 (s, 1H, CH_{Ar}), 6.99 (dd, ${}^{3}J$ =7.6 Hz, ${}^{4}J$ =1.3 Hz, 1H, CH_{Ar}), 7.35 (ddd, ${}^{3}J$ =7.0 Hz, ${}^{3}J$ =7.0 Hz, ⁴*J*=1.5 Hz, 1H, CH_{Ar}), 7.45 (ddd, ³*J*=7.5 Hz, ³*J*=7.5 Hz, ⁴*J*=1.5 Hz, 1H, CH_{Ar}), 7.88 (dd, ³*J*=8.5 Hz, ⁴*J*=1.3 Hz, 1H, CH_{Ar}), 11.43 (s, 1H, OH). ¹³C NMR (CDCl₃, 62 MHz): δ=14.9, 17.3 (CH₃), 22.6, 25.9, 26.1, 29.4, 29.8, 31.7 (CH₂), 51.8 (OCH₃), 108.1 (CCOOCH₃), 121.2, 123.5, 127.5, 131.2, 132.1 (CH_{Ar}), 129.3, 137.0, 138.7, 142.9, 148.9, 160.7 (C_{Ar}), 170.0 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3066 (w), 2954 (w), 2856 (w), 1661 (s), 1606 (w), 1564 (w), 1526 (s), 1439 (m), 1399 (m), 1349 (m), 1273 (m), 1213 (m), 1175 (m), 1118 (w), 1035 (w), 908 (m), 854 (w), 786 (w), 732 (s), 708 (w), 633 (w). GC–MS (EI, 70 eV): m/z (%)=386 ([M]⁺+1, 25), 385 ([M]⁺, 100), 339 (21), 338 (64), 336 (23), 292 (29), 290 (10), 282 (47), 268 (20), 253 (10), 252 (10), 250 (15), 249 (36), 248 (27), 240 (11), 239 (50), 238 (21), 237 (30), 235 (18), 234 (12), 224 (14), 223 (19), 222 (53), 221 (13), 210 (20), 208 (39), 207 (38), 195 (13), 194 (42), 193 (22), 181 (10), 180 (12), 179 (19), 178 (37), 167 (14), 166 (13), 153 (11), 152 (20), 115 (12), 43 (20), 41 (15), 29 (12). HRMS (EI): Calcd for C₂₂H₂₇NO₅: 385.18837; found: 385.187845.

4.4.9. Methyl 5-ethyl-4-heptyl-3-hydroxy-2'-nitrobiphenyl-2-carboxylate (**6i**). Starting with **5e** (2.367 g, 6.6 mmol), TiCl₄ (1.251 g, 6.6 mmol), CH₂Cl₂ (12 mL) and **4b** (1.760 g, 6.0 mmol), **6i** was isolated (0.934 g, 39%) as a yellowish oil. 1 H NMR (CDCl₃, 250 MHz): δ =0.79– 0.80 (m, 3H, (CH₂)₆CH₃), 1.12 (t, ³*J*=7.6 Hz, 3H, CH₂CH₃), 1.21–1.26 (m, 10H, $5 \times CH_2$), 2.57 (q, ³J=7.3 Hz, 2H, CH_2CH_3), 2.61–2.66 (m, 2H, CH_2), 3.37 (s, 3H, OCH₃), 6.40 (s, 1H, CH_{Ar}), 7.17 (dd, ³*J*=7.4 Hz, ⁴*J*=1.4 Hz, 1H, CH_{Ar}), 7.38 (ddd, ³*J*=7.1 Hz, ³*J*=7.2 Hz, ⁴*J*=1.5 Hz, 1H, CH_{Ar}), 7.51 (ddd, ${}^{3}J=7.6$ Hz, ${}^{3}J=7.5$ Hz, ${}^{4}J=1.5$ Hz, 1H, CH_{Ar}), 7.92 (dd, ${}^{3}J=7.9$ Hz, ⁴*J*=1.3 Hz, 1H, CH_{Ar}), 11.48 (s, 1H, OH). ¹³C NMR (CDCl₃, 62 MHz): δ=13.1, 16.3 (CH₃), 21.7, 24.9, 25.1, 28.2, 28.5, 29.1, 30.9 (CH₂), 50.8 (OCH₃), 107.1 (CCOOCH₃), 120.2, 122.5, 126.5, 130.3, 131.1 (CH_{Ar}), 124.9, 136.1, 137.6, 141.9, 147.8, 159.7 (C_{Ar}), 170.0 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3066 (w), 2953 (w), 2853 (w), 1660 (m), 1606 (w), 1564 (w), 1525 (s), 1438 (m), 1399 (m), 1347 (m), 1281 (m), 1212 (m), 1174 (m), 1118 (w), 1055 (w), 907 (m), 854 (w), 782 (w), 730 (s), 708 (m), 633 (w). GC-MS (EI, 70 eV): m/z (%)=400 ([M]⁺+1, 28), 399 ([M]⁺, 100), 353 (20), 350 (22), 322 (10), 306 (27), 282 (48), 268 (20), 264 (10), 263 (10), 253 (15), 252 (12), 250 (15), 249 (33), 248 (27), 240 (11), 239 (51), 238 (25), 237 (32), 236 (17), 235 (18), 234 (12), 224 (20), 223 (20), 222 (53), 221 (13), 210 (17), 209 (17), 208 (45), 207 (36), 195 (13), 194 (38), 193 (20), 181 (10), 180 (12), 179 (17), 178 (33), 167 (14), 166 (50), 165 (15), 153 (9), 152 (17), 115 (11), 43 (26), 41 (17), 29 (13). HRMS (EI): Calcd for C₂₃H₂₉NO₅: 399.20402; found: 399.202985.

4.4.10. Methyl 5-ethyl-3-hydroxy-2'-nitro-4-octylbiphenyl-2-carboxylate (6j). Starting with 5f (1.639 g, 4.4 mmol), TiCl₄ (0.834 g, 4.4 mmol), CH₂Cl₂ (8 mL) and **4b** (1.173 g, 4.0 mmol), **6j** was isolated (0.627 g, 38%) as a yellowish oil. ¹H NMR (CDCl₃, 250 MHz): δ =0.71 (t, ³*J*=7.3 Hz, 3H, (CH₂)₇*CH*₃), 1.02 (t, ³*J*=7.5 Hz, 3H, CH₂*CH*₃), 1.04– 1.12 (m, 12H, $6 \times CH_2$), 2.47 (q, ³J=7.3 Hz, 2H, CH_2CH_3), 2.52–2.55 (m, 2H, CH₂), 3.27 (s, 3H, OCH₃), 6.30 (s, 1H, CH_{Ar}), 7.08 (dd, ³*J*=7.3 Hz, ${}^{4}J$ =1.1 Hz, 1H, CH_{Ar}), 7.28 (ddd, ${}^{3}J$ =7.7 Hz, ${}^{3}J$ =7.7 Hz, ${}^{4}J$ =1.3 Hz, 1H, CH_{Ar}), 7.40 (ddd, ³*J*=7.3 Hz, ³*J*=7.3 Hz, ⁴*J*=1.3 Hz, 1H, CH_{Ar}), 7.84 (dd, ³*J*=8.5 Hz, ⁴*J*=1.5 Hz, 1H, CH_{Ar}), 11.38 (s, 1H, OH). ¹³C NMR (CDCl₃, 62 MHz): δ=15.2, 16.1 (CH₃), 23.8, 27.1, 27.3, 30.3, 30.4, 30.5, 30.7, 33.1 (CH₂), 50.0 (OCH₃), 109.4 (CCOOCH₃), 122.3, 124.7, 128.7, 132.4, 133.3 (CH_{Ar}), 130.4, 138.2, 139.9, 149.3, 150.0, 162.2 (C_{Ar}), 172.2 (CO). IR (neat, cm^{-1}): $\tilde{\nu}$ =2953 (w), 2853 (w), 1753 (w), 1661 (m), 1606 (m), 1563 (w), 1526 (s), 1437 (m), 1398 (m), 1348 (m), 1275 (m), 1213 (m), 1174 (m), 1120 (w), 1053 (w), 904 (m), 841 (w), 753 (m), 706 (m), 630 (w). GC-MS (EI, 70 eV): m/z (%)=414 ([M]⁺+1, 28), 413 ([M]⁺, 100), 368 (11), 367 (42), 354 (13), 353 (22), 352 (91), 336 (19), 320 (14), 306 (20), 283 (14), 282 (82), 266 (20), 253 (21), 252 (16), 250 (15), 249 (15), 248 (20), 240 (12), 239 (46), 238 (25), 237 (27), 236 (24), 235 (23), 234 (12), 224 (34), 223 (16), 222 (49), 221 (20), 210 (14), 209 (14), 208 (35), 207 (23), 206 (11), 205 (10), 196 (12), 194 (30), 193 (29), 192 (14), 181 (12), 180 (12), 179 (14), 178 (26), 167 (14), 166 (12), 165 (54), 153 (9), 152 (20), 55 (12), 43 (26), 41 (25), 29 (16). HRMS (EI): Calcd for C₂₄H₃₁NO₅: 413.21967; found: 413.220441.

4.4.11. *Methyl* 3-*hydroxy-2'*-*nitro*-5-*propylbiphenyl*-2-*carboxylate* (**6***k*). Starting with **5a** (1.145 g, 4.4 mmol), TiCl₄ (0.835 g, 4.4 mmol), CH₂Cl₂ (8 mL) and **4c** (1.229 g, 4.0 mmol), **6***k* was isolated (0.607 g, 48%) as a yellow gummy solid. ¹H NMR (CDCl₃, 250 MHz): δ =0.80 (t, ³*J*=7.5 Hz, 3H, CH₃), 1.47–1.56 (m, 2H, CH₂), 2.44 (t, ³*J*=7.0 Hz, 2H, CH₂), 3.27 (s, 3H, OCH₃), 6.36 (d, ⁴*J*=1.8 Hz, 1H, CH_{Ar}), 6.74 (d, ⁴*J*=1.8 Hz, 1H, CH_{Ar}), 7.12 (dd, ³*J*=7.5 Hz, ⁴*J*=1.8 Hz, 1H, CH_{Ar}), 7.36 (ddd, ³*J*=7.3 Hz, ³*J*=7.0 Hz, ⁴*J*=1.4 Hz, 1H, CH_{Ar}), 7.47 (ddd, ³*J*=7.6 Hz, ³*J*=7.3 Hz, ⁴*J*=1.5 Hz, 1H, CH_{Ar}), 7.91 (dd, ³*J*=7.2 Hz, ⁴*J*=1.2 Hz, 1H, CH_{Ar}), 11.10 (s, 1H, OH). ¹³C NMR (CDCl₃, 62 MHz): δ_{C} =13.8 (CH₃), 23.4, 37.7 (CH₂), 51.8 (OCH₃), 108.6 (C_{Ar}), 117.3, 122.0, 123.7, 127.8, 131.1, 132.5 (CH_{Ar}), 138.4, 140.3, 147.8, 150.2, 162.4 (C_{Ar}), 170.3 (C=O). GC-MS (EI, 70 eV): *m/z* (%)=315 ([M]⁺, 47), 269 (100), 255 (17), 240 (11), 227 (14), 197 (10), 181 (18), 165 (16), 152 (31), 115 (19), 77 (8). HRMS (EI): Calcd for C₁₇H₁₇NO₅: 315.11062; found: 315.11032.

4.4.12. Methyl 3-hydroxy-4-methyl-2'-nitro-5-propylbiphenyl-2carboxylate (**6***l*). Starting with **5b** (1.207 g, 4.4 mmol), TiCl₄ (0.835 g, 4.4 mmol), CH₂Cl₂ (8 mL) and **4c** (1.229 g, 4.0 mmol), **6l** was isolated (0.500 g, 38%) as a yellowish oil. ¹H NMR (CDCl₃, 250 MHz): δ =0.82 (t, ³*J*=7.6 Hz, 3H, CH₃), 1.41–1.50 (m, 2H, CH₂), 2.12(s, 3H, CH₃), 2.47 (t, ³*J*=7.5 Hz, 2H, CH₂), 3.32 (s, 3H, OCH₃), 6.34 (s, 1H, CH_{Ar}), 7.11 (dd, ³*J*=8.7 Hz, ⁴*J*=1.5 Hz, 1H, CH_{Ar}), 7.34 (ddd, ³*J*=8.0 Hz, ³*J*=7.9 Hz, ⁴*J*=1.4 Hz, 1H, CH_{Ar}), 7.45 (ddd, ³*J*=7.5 Hz, ⁴*J*=1.6 Hz, 1H, CH_{Ar}), 11.49 (s, 1H, OH). ¹³C NMR (CDCl₃, 62 MHz): δ_{C} =10.3, 12.9 (CH₃), 22.1, 35.0 (CH₂), 50.8 (OCH₃), 107.0 (C_{Ar}), 121.0, 122.6 (CH_{Ar}), 127.7 (CH_{Ar}), 170.1 (C=O). GC-MS (EI, 70 eV): *m/z* (%)=329 ([M]⁺, 55), 297 (100), 283 (20), 238 (18), 224 (30), 208 (14), 194 (12), 165 (25), 139 (7), 115 (9), 77 (5). HRMS (EI): Calcd for C₁₈H₁₉NO₅: 329.12577; found: 329.12597.

4.4.13. Ethyl 4-ethyl-3-hydroxy-2'-nitro-5-propylbiphenyl-2-carboxylate (6m). Starting with 5c (0.998 g, 3.3 mmol), TiCl₄ (0.625 g, 3.3 mmol), CH₂Cl₂ (7 mL) and 4c (0.876 g, 3.0 mmol), 6m was isolated (0.400 g, 37%) as a yellowish oil. ¹H NMR (CDCl₃, 250 MHz): δ =0.59 (t, ³*J*=7.3 Hz, 3H, CH₃), 0.83 (t, ³*J*=6.5 Hz, 3H, CH₃), 1.07 (t, ³*J*=7.4 Hz, 3H, CH₃), 1.39–1.48 (m, 2H, CH₂), 2.43–2.50 (m, 2H, CH₂), 2.57-2.66 (m, 2H, CH₂), 3.82 (q, ³J=6.5 Hz, 2H, OCH₂), 6.32 (s, 1H, CH_{Ar}), 7.12 (dd, ³*J*=7.5 Hz, ⁴*J*=1.5 Hz, 1H, CH_{Ar}), 7.34 (ddd, ³*J*=8.0 Hz, ${}^{3}J=7.5$ Hz, ${}^{4}J=1.5$ Hz, 1H, CH_{Ar}), 7.44 (ddd, ${}^{3}J=7.5$ Hz, ${}^{3}J=7.4$ Hz, ${}^{4}J=1.5$ Hz, 1H, CH_{Ar}), 7.88 (dd, ${}^{3}J=7.6$ Hz, ${}^{4}J=1.3$ Hz, 1H, CH_{Ar}), 11.58 (s, 1H, OH). ¹³C NMR (CDCl₃, 62 MHz): δ_{C} =8.9, 14.4, 15.2 (CH₃), 20.3, 25.1, 36.3 (CH₂), 62.0 (OCH₂), 109.4 (C_{Ar}), 123.1, 124.7, 128.6 (CH_{Ar}), 131.7 (C_{Ar}), 132.4, 133.2 (CH_{Ar}), 137.9, 140.1, 148.1, 149.1, 162.0 (C_{Ar}), 171.8 (C=O). GC-MS (EI, 70 eV): *m*/*z* (%)=357 ([M]⁺, 100), 311 (54), 283 (21), 266 (38), 250 (43), 235 (20), 220 (58), 194 (20), 180 (39), 165 (39), 152 (27), 115 (15), 77 (11). HRMS (EI): Calcd for C₂₀H₂₃NO₅: 357.15707; found: 329.15710.

4.4.14. Methyl 4-hexyl-3-hydroxy-2'-nitro-5-propylbiphenyl-2-carboxylate (**6n**). Starting with **5d** (1.1366 g, 3.3 mmol), TiCl₄ (0.625 g, 3.3 mmol), CH₂Cl₂ (6 mL) and 4c (0.876 g, 3.0 mmol), 6n was isolated (0.315 g, 26%) as a yellow oil. ¹H NMR (CDCl₃, 250 MHz): $\delta = 0.70 - 0.81$ (m, 6H, 2×CH₃), 1.34–1.43 (m, 4H, 2×CH₂), 2.38–2.44 (m, 2H, CH₂), 2.47-2.55 (m, 2H, CH₂), 3.26 (s, 3H, OCH₃), 6.28 (s, 1H, CH_{Ar}), 7.06 (dd, ³*J*=7.5 Hz, ⁴*J*=1.3 Hz, 1H, CH_{Ar}), 7.28 (ddd, ³*J*=7.5 Hz, ${}^{3}J=7.5$ Hz, ${}^{4}J=1.5$ Hz, 1H, CH_{Ar}), 7.40 (ddd, ${}^{3}J=7.5$ Hz, ${}^{3}J=7.5$ Hz, ${}^{4}J$ =1.5 Hz, 1H, CH_{Ar}), 7.82 (dd, ${}^{3}J$ =7.6 Hz, ${}^{4}J$ =1.3 Hz, 1H, CH_{Ar}), 11.39 (s, 1H, OH). ¹³C NMR (CDCl₃, 62 MHz): δ_C =15.2, 15.3 (CH₃), 22.8, 25.1, 27.2, 30.7, 31.0, 32.9, 36.4 (CH₂), 53.0 (OCH₃), 109.4 (C_{Ar}), 123.4, 124.7, 128.8 (CHAr), 130.8 (CAr), 132.4, 133.4 (CHAr), 138.0, 139.9, 148.6, 149.3, 162.0 (C_{Ar}), 171.2 (C=O). GC-MS (EI, 70 eV): m/z (%)=399 ([M]⁺, 100), 353 (18), 350 (11), 340 (13), 325 (15), 324 (89), 322 (14), 306 (17), 296 (41), 278 (14), 253 (16), 238 (13), 236 (17), 235 (13), 224 (14), 222 (13), 220 (10), 208 (11), 207 (11), 193 (10), 177 (18), 165 (14), 164 (10), 161 (12), 149 (10), 111 (11), 109 (12), 97 (16), 85 (14), 83 (17), 81 (15), 71 (22), 57 (37), 55 (26), 43 (27), 41 (21). HRMS (EI): Calcd for C₂₃H₂₉NO₅: 399.20402; found: 399.203444.

4.4.15. *Methyl* 5-*butyl*-3-*hydroxy*-2'-*nitrobiphenyl*-2-*carboxylate* (**60**). Starting with **5a** (1.289 g, 4.9 mmol), TiCl₄ (0.938 g, 4.9 mmol), CH₂Cl₂ (9 mL) and **4d** (1.446 g, 4.5 mmol), **60** was isolated (0.621 g, 42%) as a yellowish oil. ¹H NMR (CDCl₃, 250 MHz): δ =0.78 (t, ³*J*=7.3 Hz, 3H, (CH₂)₃*CH*₃), 1.17–1.26 (m, 2H, CH₂), 1.41–1.53 (m, 2H, CH₂), 2.46 (t, ³*J*=7.9 Hz, 2H, *CH*₂(CH₂)₂CH₃), 3.32 (s, 3H, OCH₃), 6.35 (d, ⁴*J*=1.7 Hz, 1H, CH_{Ar}), 6.74 (d, ⁴*J*=1.7 Hz, 1H, CH_{Ar}), 7.12 (dd, ³*J*=7.5 Hz, ⁴*J*=1.6 Hz, 1H, CH_{Ar}), 7.36 (ddd, ³*J*=7.7 Hz, ⁴*J*=1.5 Hz, 1H, CH_{Ar}), 7.92 (dd, ³*J*=7.7 Hz, ⁴*J*=1.2 Hz, 1H, CH_{Ar}), 11.10 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ =12.9 (CH₃), 21.3, 31.6, 34.6 (CH₂), 50.9 (OCH₃), 107.6 (CCOOCH₃), 116.4, 120.9, 122.7, 126.9, 130.1, 131.3 (CH_{Ar}), 137.3, 139.2, 146.9, 149.5, 161.5 (C_{Ar}), 169.4 (CO). IR (neat,

cm⁻¹): $\bar{\nu}$ =3066 (w), 2954 (w), 2859 (w), 1662 (s), 1608 (m), 1570 (m), 1522 (s), 1438 (m), 1417 (m), 1346 (s), 1266 (s), 1216 (s), 1161 (m), 1146 (m), 1103 (m), 1008 (w), 950 (w), 856 (w), 808 (m), 753 (m), 702 (s), 632 (w), 545 (w). GC-MS (EI, 70 eV): m/z (%)=329 ([M]⁺, 43), 297 (32), 284 (20), 283 (100), 270 (14), 256 (10), 255 (56), 226 (12), 182 (12), 181 (15), 180 (15), 166 (10), 165 (13), 154 (26), 153 (12), 152 (27), 151 (10), 139 (10), 115 (15), 97 (12). HRMS (EI): Calcd for C₁₈H₁₉NO₅: 329.12577; found: 329.125715.

4.4.16. Methyl 5-butyl-3-hydroxy-4-methyl-2'-nitrobiphenyl-2-carboxylate (6p). Starting with 5b (1.509 g, 5.5 mmol), TiCl₄ (1.043 g, 5.5 mmol), CH₂Cl₂ (10 mL) and 4d (1.607 g, 5.0 mmol), 6p was isolated (0.670 g, 39%) as a yellowish oil. ¹H NMR (CDCl₃, 250 MHz): $\delta = 0.79$ (t, ³*J*=7.1 Hz, 3H, (CH₂)₃CH₃), 1.19–1.28 (m, 2H, CH₂), 1.30– 1.44 (m, 2H, CH₂), 2.12 (s, 3H, CH₃), 2.49 (t, ${}^{3}J=7.1$ Hz, 2H, $CH_2(CH_2)_2CH_3$), 3.32 (s, 3H, OCH₃), 6.34 (s, 1H, CH_{Ar}), 7.11 (dd, ³*J*=7.4 Hz, ⁴*J*=1.3 Hz, 1H, CH_{Ar}), 7.34 (ddd, ³*J*=8.0 Hz, ³*J*=8.1 Hz, ${}^{4}J$ =1.6 Hz, 1H, CH_{Ar}), 7.45 (ddd, ${}^{3}J$ =8.0 Hz, ${}^{3}J$ =7.7 Hz, ${}^{4}J$ =1.6 Hz, 1H, CH_{Ar}), 7.88 (dd, ³*J*=8.2 Hz, ⁴*J*=1.6 Hz, 1H, CH_{Ar}), 11.48 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ=13.3, 16.0 (CH₃), 24.7, 34.1, 35.8 (CH₂), 53.9 (OCH₃), 110.0 (CCOOCH₃), 124.0, 125.6, 129.7, 133.4, 134.3 (CH_{Ar}), 126.7, 136.5, 138.9, 140.7, 150.2, 163.0 (C_{Ar}), 173.0 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =2953 (w), 2870 (w), 1659 (s), 1606 (m), 1566 (m), 1522 (s), 1437 (m), 1397 (m), 1345 (s), 1267 (s), 1196 (m), 1173 (m), 1144 (m), 1112 (m), 1010 (m), 962 (w), 852 (m), 809 (m), 752 (m), 705 (m), 633 (w), 546 (w). GC-MS (EI, 70 eV): m/z (%)=344 ([M]⁺+1, 11), 343 ([M]⁺, 53), 312 (20), 311 (100), 297 (22), 225 (19), 224 (18), 208 (24), 207 (10), 195 (11), 194 (14), 181 (10), 180 (15), 167 (11), 166 (10), 165 (26), 152 (18), 115 (10). HRMS (EI): Calcd for C₁₉H₂₁NO₅: 343.14142; found: 343.141424.

4.4.17. Methyl 5-butyl-4-hexyl-3-hydroxy-2'-nitrobiphenyl-2-carboxylate (6q). Starting with 5d (2.274 g, 6.6 mmol), TiCl₄ (1.251 g, 6.6 mmol), CH₂Cl₂ (12 mL) and 4d (1.928 g, 6.0 mmol), 6q was isolated (0.941 g, 38%) as a yellowish oil. ¹H NMR (CDCl₃, 250 MHz): $\delta = 0.74$ (m, 6H, 2×CH₃), 1.08–1.25 (m, 12H, 6×CH₂), 2.42 (t, ³J=7.4 Hz, 2H, CH₂(CH₂)₂CH₃), 2.48–2.55 (m, 2H, CH₂), 3.26 (s, 3H, OCH₃), 6.28 (s, 1H, CH_{Ar}), 7.07 (dd, ³*J*=8.1 Hz, ⁴*J*=1.6 Hz, 1H, CH_{Ar}), 7.28 (ddd, ${}^{3}J=7.4$ Hz, ${}^{3}J=7.4$ Hz, ${}^{4}J=1.6$ Hz, 1H, CH_{Ar}), 7.42 (ddd, ${}^{3}J=7.1$ Hz, ${}^{3}J=7.7$ Hz, ${}^{4}J=1.6$ Hz, 1H, CH_{Ar}), 7.83 (dd, ${}^{3}J=8.1$ Hz, ⁴J=1.6 Hz, 1H, CH_{Ar}), 11.38 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 15.1, 15.2$ (CH₃), 23.8, 23.9, 27.2, 30.6, 31.0, 32.9, 34.2, 34.3 (CH₂), 52.9 (OCH₃), 109.3 (CCOOCH₃), 123.2, 124.7, 128.7, 132.5, 133.4 (CH_{Ar}), 130.7, 138.0, 139.9, 148.9, 149.3, 162.1 (C_{Ar}), 172.2 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =2954 (m), 2856 (m), 1933 (w), 1702 (w), 1661 (m), 1606 (m), 1562 (w), 1525 (s), 1437 (m), 1397 (m), 1347 (s), 1271 (m), 1228 (m), 1174 (m), 1145 (m), 1121 (m), 1009 (w), 954 (w), 842 (m), 813 (m), 754 (m), 706 (m), 632 (w), 562 (w). GC-MS (EI 70 eV): m/z (%)=414 ([M]⁺+1, 27), 413 ([M]⁺, 98), 368 (11), 367 (38), 364 (11), 336 (19), 325 (22), 324 (100), 320 (20), 310 (26), 300 (10), 280 (11), 278 (25), 276 (16), 264 (14), 252 (13), 250 (22), 249 (17), 248 (11), 239 (13), 238 (13), 236 (20), 235 (26), 234 (19), 233 (10), 226 (11), 225 (54), 224 (15), 223 (15), 222 (16), 221 (15), 220 (20), 210 (13), 209 (12), 208 (26), 207 (15), 206 (10), 196 (12), 195 (14), 194 (33), 193 (14), 181 (13), 180 (22), 179 (12), 178 (20), 167 (14), 166 (14), 165 (36), 152 (21), 43 (23), 41 (20), 29 (13). HRMS (EI): Calcd for C₂₄H₃₁NO₅: 413.21967; found: 413.219007.

4.4.18. Methyl 5-ethyl-4-hexyl-3-hydroxy-6-methyl-2'-nitrobiphenyl-2-carboxylate (**6***r*). Starting with **5d** (2.274 g, 6.6 mmol), TiCl₄ (1.251 g, 6.6 mmol), CH₂Cl₂ (12 mL) and **4e** (1.844 g, 6.0 mmol), **6***r* was isolated (0.577 g, 38%) as a yellowish oil. ¹H NMR (CDCl₃, 250 MHz): δ =0.78-0.81 (m, 3H, (CH₂)₅CH₃), 1.07 (t, ³*J*=7.6 Hz, 3H, CH₂CH₃), 1.29-1.33 (m, 8H, 4×CH₂), 2.49 (s, 3H, CH₃), 2.56-2.68 (m, 4H, 2×CH₂), 3.28 (s, 3H, OCH₃), 7.04 (dd, ³*J*=7.8 Hz, ⁴*J*=1.5 Hz, 1H, CH_{Ar}), 7.40 (ddd, ³*J*=7.8 Hz, ⁴*J*=1.5 Hz, 1H, CH_{Ar}), 7.51

(ddd, ${}^{3}J=7.5$ Hz, ${}^{3}J=7.2$ Hz, ${}^{4}J=1.5$ Hz, 1H, CH_{Ar}), 8.0 (dd, ${}^{3}J=8.1$ Hz, ${}^{4}J=1.5$ Hz, 1H, CH_{Ar}), 11.19 (s, 1H, OH). 13 C NMR (CDCl₃, 62 MHz): $\delta=13.9$, 14.1, 16.4 (CH₃), 22.4, 25.8, 28.5, 29.9, 31.4, 31.8 (CH₂), 51.8 (OCH₃), 108.5 (CCOOCH₃), 123.7, 127.5, 131.1, 132.6 (CH_{Ar}), 125.1, 129.3, 136.1, 138.5, 148.3, 148.4, 158.6 (C_{Ar}), 171.6 (CO). IR (neat, cm⁻¹): $\tilde{\nu}=2954$ (w), 2926 (m), 2856 (w), 1753 (m), 1659 (s), 1594 (w), 1525 (s), 1438 (m), 1411 (m), 1348 (s), 1263 (m), 1211 (s), 1175 (m), 1119 (w), 1016 (w), 919 (w), 853 (w), 788 (w), 752 (m), 707 (w), 627 (w). GC-MS (EI, 70 eV): m/z (%)=400 ([M]⁺+1, 15), 399 ([M]⁺, 59), 339 (23), 338 (100), 296 (27), 292 (23), 263 (11), 253 (10), 252 (10), 250 (10), 249 (21), 238 (17), 236 (13), 234 (10), 222 (14), 221 (10), 208 (14), 207 (21), 179 (13), 178 (21), 165 (14), 152 (9), 43 (13), 41 (10). HRMS (EI): Calcd for C₂₃H₂₉NO₅: 399.20402; found: 399.203491.

4.4.19. Methyl 6-chloro-3-hydroxy-2'-nitro-5-propylbiphenyl-2-carboxylate (6s). Starting with 5a (1.260 g, 4.8 mmol), TiCl₄ (0.920 g, 4.8 mmol), CH₂Cl₂ (9 mL) and 4f (1.50 g, 4.4 mmol), 6s was isolated (0.841 g, 55%) as a yellowish oil. ¹H NMR (CDCl₃, 250 MHz): $\delta = 0.87$ $(t, {}^{3}J=7.5 \text{ Hz}, 3\text{H}, (CH_{2})_{2}CH_{3}), 1.51-1.59 (m, 2H, CH_{2}), 2.58 (t, 3H)$ ³*J*=7.5 Hz, 2H, *CH*₂CH₂CH₃), 3.28 (s, 3H, OCH₃), 6.84 (s, 1H, CH_{Ar}), 7.03 (dd, ${}^{3}J=7.5$ Hz, ${}^{4}J=1.8$ Hz, 1H, CH_{Ar}), 7.42 (ddd, ${}^{3}J=8.1$ Hz, ${}^{3}J=8.1$ Hz, ${}^{4}J=1.8$ Hz, 1H, CH_{Ar}), 7.55 (ddd, ${}^{3}J=8.1$ Hz, ${}^{3}J=8.1$ Hz, ⁴*J*=1.7 Hz, 1H, CH_{Ar}), 8.08 (dd, ³*J*=7.8 Hz, ⁴*J*=1.8 Hz, 1H, CH_{Ar}), 10.94 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 13.8$ (CH₃), 22.2, 36.4 (CH₂), 52.3 (OCH₃), 69.68 (CH_{Ar}), 110.3 (CCOOCH₃), 124.4, 130.0, 131.7, 134.9 (CH_{Ar}), 128.3, 136.3, 138.9, 145.3, 148.2, 160.7 (C_{Ar}), 169.8 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3102 (w), 3017 (w), 2959 (w), 2862 (w), 1723 (m). 1668 (w), 1601 (w), 1569 (w), 1524 (s), 1440 (m), 1340 (s), 1297 (m), 1266 (m), 1196 (m), 1164 (w), 1144 (m), 1113 (w), 1040 (w), 997 (m), 857 (m), 787 (s), 762 (m), 717 (m), 698 (s), 650 (m), 634 (s), 555 (w). GC-MS (EI 70 eV): m/z (%)=351 ([M⁺], ³⁷Cl, 25), 349 ([M⁺], ³⁵Cl, 71), 317 (20), 314 (44), 313 (11), 305 (12), 303 (35), 290 (10), 283 (18), 282 (100), 274 (18), 272 (24), 257 (16), 255 (13), 254 (70), 246 (11), 244 (20), 231 (14), 230 (13), 227 (17), 226 (33), 225 (38), 218 (15), 216 (13), 215 (14), 214 (15), 209 (18), 208 (11), 198 (21), 195 (13), 193 (24), 186 (11), 182 (13), 181 (17), 180 (22), 178 (23), 177 (34), 170 (10), 168 (21), 167 (19), 166 (10), 165 (26), 163 (13), 158 (10), 155 (16), 153 (24), 152 (49), 151 (33), 149 (17), 139 (40), 131 (13), 128 (15), 126 (16), 124 (21), 115 (12), 114 (10), 77 (11), 76 (12), 75 (11), 67 (14), 29 (10). HRMS (EI): Calcd for C₁₇H₁₆NO₅Cl: 349.07115; found: 349.070500.

4.4.20. Methyl 3-hydroxy-4,5-dimethyl-3'-nitrobiphenyl-2-carboxylate (**6t**). Starting with **5b** (0.598 g, 2.2 mmol), TiCl₄ (0.413 g, 2.2 mmol), CH₂Cl₂ (4 mL) and **4g** (0.548 g, 2.0 mmol), **6t** was isolated (0.305 g, 50%) as a yellowish oil. ¹H NMR (CDCl₃, 250 MHz): δ =2.09 (s, 3H, CH₃), 2.21 (s, 3H, CH₃), 3.36 (s, 3H, OCH₃), 6.46 (s, 1H, CH_{Ar}), 7.30–7.40 (m, 2H, CH_{Ar}), 7.97 (m, 1H, CH_{Ar}), 8.03–8.07 (m, 1H, CH_{Ar}), 11.19 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ_{C} =12.0, 21.3 (CH₃), 52.1 (OCH₃), 108.7 (C_{Ar}), 121.9, 123.5, 124.3 (CH_{Ar}), 125.7 (C_{Ar}), 128.6, 134.9 (CH_{Ar}), 139.0, 144.0, 145.4, 148.1, 160.7, (C_{Ar}), 171.6 (C=O). GC–MS (EI 70 eV): *m/z* (%)=301 ([M]⁺, 46), 269 (100), 252 (66), 222 (40), 195 (17), 165 (33), 152 (28), 139 (7), 82 (5). HRMS (EI): Calcd for C₁₆H₁₅NO₅: 301.09444; found: 301.09431.

4.4.21. Ethyl 4-ethyl-3-hydroxy-5-methyl-3'-nitrobiphenyl-2-carboxylate (**6u**). Starting with **5c** (0.659 g, 2.2 mmol), TiCl₄ (0.41 g, 2.2 mmol), CH₂Cl₂ (4 mL) and **4g** (0.548 g, 2.0 mmol), **6u** was isolated (0.250 g, 37%) as a yellow gummy solid, mp=90-92 °C. ¹H NMR (CDCl₃, 300 MHz): δ =0.63 (t, ³*J*=7.7 Hz, 3H, CH₃), 1.04 (t, ³*J*=7.7 Hz, 3H, CH₃), 2.23 (s, 3H, CH₃), 2.62 (q, ³*J*=7.0 Hz, 2H, CH₂), 3.87 (q, ³*J*=6.0 Hz, 2H, OCH₂), 6.46 (s, 1H, CH_{Ar}), 7.37-7.45 (m, 2H, CH_{Ar}), 7.99 (m, 1H, CH_{Ar}), 8.03-8.07 (m, 1H, CH_{Ar}), 11.32 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ _C=11.9, 12.0, 18.4 (CH₃), 18.6 (CH₂), 60.0 (OCH₂), 107.6 (C_{Ar}), 120.3, 122.2, 123.1, 127.2, 130.3 (CH_{Ar}), 133.5, 137.8, 141.6, 144.1, 146.6, 159.3 (C_{Ar}), 169.7 (C=O). GC-MS (EI,

70 eV): m/z (%)=329 ([M]⁺, 58), 283 (92), 266 (100), 236 (23), 209 (30), 194 (8), 178 (11), 165 (41), 152 (16), 139 (7), 115 (6). HRMS (EI): Calcd for C₁₈H₁₉NO₅: 329.12577; found: 329.12659.

4.4.22. Methyl 3-hydroxy-5-methyl-4'-nitrobiphenyl-2-carboxylate (**6v**). Starting with **5a** (0.568 g, 2.2 mmol), TiCl₄ (0.413 g, 2.2 mmol), CH₂Cl₂ (4 mL) and **4h** (0.558 g, 4.0 mmol), **6v** was isolated (0.206 g, 36%) as a colourless solid, mp=85-87 °C. ¹H NMR (CDCl₃, 250 MHz): δ =2.23 (s, 3H, CH₃), 3.36 (s, 3H, OCH₃), 6.44 (d, ⁴*J*=1.6 Hz, 1H, CH_{Ar}), 6.77 (d, ⁴*J*=1.3 Hz, 1H, CH_{Ar}), 7.25 (d, ³*J*=8.8 Hz, 2H, CH_{Ar}), 8.10 (d, ³*J*=8.8 Hz, 2H, CH_{Ar}), 10.81 (s, 1H, OH). ¹³C NMR (CDCl₃, 62 MHz): δ c=21.6 (CH₃), 51.7 (OCH₃), 108.6 (C_{Ar}), 118.2 (CH_{Ar}), 122.8 (2CH_{Ar}), 123.5 (CH_{Ar}), 129.0 (2CH_{Ar}), 142.1, 145.4, 146.9, 149.9, 162.2 (C_{Ar}), 170.0 (C=O). GC-MS (EI 70 eV): *m/z* (%)=287 ([M]⁺, 27), 255 (100), 197 (9), 181 (30), 152 (20), 115 (5), 76 (7). HRMS (EI): Calcd for C₁₅H₁₃NO₅: 287.07882; found: 287.07879.

4.4.23. *Methyl* 3-*hydroxy*-4,5-*dimethyl*-4'-*nitrobiphenyl*-2-*carboxylate* (**6***w*). Starting with **5b** (0.598 g, 2.2 mmol), TiCl₄ (0.413 g, 2.2 mmol), CH₂Cl₂ (4 mL) and **4h** (0.558 g, 2.0 mmol), **6w** was isolated (0.276 g, 46%) as a colourless solid, mp=87-89 °C. ¹H NMR (CDCl₃, 250 MHz): δ =2.16 (s, 3H, CH₃), 2.25 (s, 3H, CH₃) 3.40 (s, 3H, OCH₃), 6.49 (s, 1H, CH_{Ar}), 7.29 (d, ³*J*=8.8 Hz, 2H, CH_{Ar}), 8.14 (d, ³*J*=8.8 Hz, 2H, CH_{Ar}), 11.18 (s, 1H, OH). ¹³C NMR (CDCl₃, 62 MHz): δ C=11.5, 20.4 (CH₃), 51.7 (OCH₃), 108.2 (C_{Ar}), 122.7 (2CH_{Ar}), 123.6 (CH_{Ar}), 125.4 (CH_{Ar}), 129.0 (2CH_{Ar}), 138.9, 143.5, 146.6, 150.2, 160.2 (C_{Ar}), 171.1 (C=O). GC-MS (EI 70 eV): *m/z* (%)=301 ([M]⁺, 40), 269 (100), 254 (19), 223 (42), 195 (17), 180 (6), 165 (32), 152 (29), 139 (7), 115 (7), 76 (5). HRMS (EI): Calcd for C₁₆H₁₅NO₅: 301.09447; found: 301.09477.

4.4.24. Ethyl 4-ethyl-3-hydroxy-5-methyl-4'-nitrobiphenyl-2-carboxylate (**6x**). Starting with **5c** (0.659 g, 2.2 mmol), TiCl₄ (0.413 g, 2.2 mmol), CH₂Cl₂ (4 mL) and **4h** (0.558 g, 2.0 mmol), **6x** was isolated (0.217 g, 33%) as a colourless solid, mp=80-82 °C. ¹H NMR (CDCl₃, 250 MHz): δ =0.65 (t, ³*J*=7.4 Hz, 3H, CH₃), 1.09 (t, ³*J*=7.5 Hz, 3H, CH₃), 2.27 (s, 3H, CH₃), 2.67 (q, ³*J*=7.5 Hz, 2H, CH₂), 3.92 (q, ³*J*=7.4 Hz, 2H, OCH₂), 6.46 (s, 1H, CH_{Ar}), 7.30 (d, ³*J*=8.8 Hz, 2H, CH_{Ar}), 8.14 (d, ³*J*=8.8 Hz, 2H, CH_{Ar}), 11.27 (s, 1H, OH). ¹³C NMR (CDCl₃, 62 MHz): δ _C=12.9, 13.1, 19.4 (CH₃), 19.6 (CH₂), 61.1 (OCH₂), 108.5 (C_{Ar}), 122.7 (2CH_{Ar}), 123.7 (CH_{Ar}), 129.1 (2CH_{Ar}), 131.3, 139.1, 142.5, 146.5, 150.5, 160.2 (C_{Ar}), 170.7 (C=0). GC-MS (EI 70 eV): *m/z* (%)=329 ([M]⁺, 58), 283 (100), 266 (50), 240 (46), 222 (9), 209 (13), 178 (10), 165 (56), 152 (19), 139 (8), 115 (7), 77 (4). HRMS (EI): Calcd for C₁₈H₁₉NO₅: 329.12577; found: 329.12590.

4.5. General procedure for the synthesis of phenanthridinones 7a–s

To a stirred methanol suspension (25 mL) of Pd/C (10 mol %) was added **6a–s** (1.0 equiv). The mixture was set under a hydrogen atmosphere. After stirring for 48 h at 20 °C, the reaction mixture was filtered (Celite) and the filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, heptanes/EtOAc=2:1).

4.5.1. 7-Hydroxy-9-methyl-6(5H)-phenanthridinone (**7a**). Starting with **6a** (0.429 g, 1.6 mmol), **7a** was isolated (0.215 g, 64%) by column chromatography (silica gel, heptanes/EtOAc=30:1→20:1) as a colourless solid, mp=245-247 °C. ¹H NMR (DMSO-*d*₆, 250 MHz): δ =2.45 (s, 3H, CH₃), 6.82 (s, 1H, CH_{Ar}), 7.27-7.30 (m, 1H, CH_{Ar}), 7.33-7.41 (m, 1H, CH_{Ar}), 7.49-7.55 (m, 1H, CH_{Ar}), 7.76 (m, 1H, CH_{Ar}), 8.34 (d, ³*J*=7.9 Hz, 1H, CH_{Ar}), 12.02 (br s, 1H, NH), 13.25 (s, 1H, OH). ¹³C NMR (DMSO-*d*₆, 62 MHz): δ_C =21.8 (CH₃), 107.9 (C_{Ar}), 113.1 115.0, 116.6 (CH_{Ar}), 118.0 (C_{Ar}), 123.2, 123.6, 128.4 (CH_{Ar}), 129.8, 135.6, 146.0, 159.4 (C_{Ar}), 165.7 (C=O). MS (EI, 70 eV): *m/z* (%)=225 ([M]⁺,

100), 206 (10), 196 (16), 99 (14), 73 (16), 57 (27), 43 (52). HRMS (EI): Calcd for $C_{14}H_{11}NO_2$: 225.07853; found: 225.07843.

4.5.2. 7-*Hydroxy*-8,9-*dimethylphenanthridin*-6(5*H*)-*one* (**7b**). Starting with **6b** (0.504 g, 1.7 mmol), **7b** was isolated (0.200 g, 52%) by column chromatography (silica gel, heptanes/ EtOAc=30:1→20:1) as a colourless solid, mp=260–261 °C. ¹H NMR (DMSO-*d*₆, 250 MHz): δ=2.08 (s, 3H, CH₃), 2.21 (s, 3H, CH₃), 7.27– 7.52 (m, 3H, CH_{Ar}), 7.74 (s, 1H, CH_{Ar}), 8.34 (d, ³*J*=7.5 Hz, 1H, CH_{Ar}), 11.97 (br s, 1H, NH), 13.60 (s, 1H, OH). ¹³C NMR (DMSO-*d*₆, 62 MHz): δ_C=10.6, 13.9 (CH₃), 107.3 (C_{Ar}), 112.4, 116.4, 121.3, (CH_{Ar}), 123.0 (C_{Ar}), 123.2, 123.6, 129.2 (CH_{Ar}), 135.1, 148.3, 159.2, (C_{Ar}), 165.6 (C=O). MS (EI, 70 eV): *m/z* (%)=239 ([M]⁺, 89), 224 (34), 191 (10), 97 (26), 84 (100), 66 (98), 57 (95). Anal. Calcd for C₁₅H₁₃NO₂: C 75.30, H 5.48, N 5.85; found: C 75.40, H 5.42, N 5.70.

4.5.3. 8-*Ethyl*-7-*hydroxy*-9-*methylphenanthridin*-6(*5H*)-*one* (**7c**). Starting with **6c** (0.137 g, 0.4 mmol), **7c** was isolated (0.070 g, 70%) by column chromatography (silica gel, heptanes/EtOAc=30:1 → 20:1) as a colourless solid, mp=257-259 °C. ¹H NMR (DMSO-*d*₆, 250 MHz): δ =1.10 (t, ³*J*=8.0 Hz, 3H, CH₃), 2.47 (s, 3H, CH₃), 2.68 (q, ³*J*=7.5 Hz, 2H, CH₂), 7.26-7.32 (m, 1H, CH_{Ar}), 7.36-7.39 (m, 1H, CH_{Ar}), 7.46-7.52 (m, 1H, CH_{Ar}), 7.75 (s, 1H, CH_{Ar}), 8.31 (d, ³*J*=8.4 Hz, 1H, CH_{Ar}), 11.99 (br s, 1H, NH), 13.59 (s, 1H, OH). ¹³C NMR (DMSO-*d*₆, 62 MHz): δ _C=13.0, 18.5 (CH₃), 19.8 (CH₂), 107.6 (C_{Ar}), 113.5, 116.5 (CH_{Ar}), 118.3 (C_{Ar}), 123.0, 123.3, (CH_{Ar}), 127.8 (CH_{Ar}), 129.3 (CH_{Ar}), 132.2, 135.2, 143.6, 158.9 (C_{Ar}), 165.8 (C=O). MS (EI, 70 eV): *m/z* (%)=253 ([M]⁺, 39), 238 (100), 220 (2), 190 (5), 165 (6), 104 (4), 95 (3), 63 (3). HRMS (EI): Calcd for C₁₆H₁₅NO₂: 253.10973; found: 253.10991.

4.5.4. 7-*Hydroxy*-9-*methyl*-8-*octylphenanthridin*-6(5*H*)-*one* (**7d**). Starting with **6d** (0.275 g, 0.7 mmol), **7d** was isolated (0.200 g, 69%) by column chromatography (silica gel, heptanes/ EtOAc=30:1 \rightarrow 20:1) as a colourless solid, mp=268-269 °C. ¹H NMR (DMSO-*d*₆/CDCl₃, 250 MHz): δ =0.77-0.85 (m, 3H, CH₃), 1.85-1.24 (m, 8H, CH₂), 1.41-1.49 (m, 4H, CH₂), 2.41 (s, 3H, Ch₃), 2.60-2.66 (m, 2H, CH₂), 7.16-7.32 (m, 3H, CH_Ar), 7.53 (s, 1H, CH_Ar), 8.12 (d, ³*J*=7.8 Hz, 1H, CH_Ar), 11.70 (br s, 1H, NH), 13.44 (s, 1H, OH). ¹³C NMR (DMSO-*d*₆/CDCl₃, 62 MHz): δ _C=13.8, 20.1 (CH₃), 22.1, 25.3, 28.4, 28.6, 29.0, 29.3, 31.5 (CH₂), 107.6 (C_{Ar}), 112.8, 112.9, 116.3 (CH_{Ar}), 118.2 (C_{Ar}), 122.6 (CH_{Ar}), 126.6, 126.7 (C_{Ar}), 128.6 (CH_{Ar}), 132.0, 143.2, 159.2 (C_{Ar}), 165.6 (C=O). MS (EI, 70 eV): *m/z* (%)=337 ([M]⁺, 28), 308 (4), 276 (3), 252 (7), 238 (100), 224 (5), 192 (3), 160 (4) 128 (25), 97 (14), 69 (15). HRMS (EI): Calcd for C₂₂H₂₇NO₂: 337.20363; found: 337.20310.

4.5.5. 9-Ethyl-7-hydroxyphenanthridin-6(5H)-one (7e). Starting with 6e (0.190 g, 0.6 mmol), 7e was isolated (0.113 g, 75%) by column chromatography (silica gel, heptanes/EtOAc= $30:1 \rightarrow 20:1$) as a colourless solid, mp=260–261 °C. ¹H NMR (DMSO- d_6 , 250 MHz): δ =1.27 (t, ³*J*=7.7 Hz, 3H, CH₂CH₃), 2.75 (q, ³*J*=7.2 Hz, 2H, CH₂CH₃), 6.85 (br s, 1H, CH_{Ar}), 7.28-7.34 (m, 1H, CH_{Ar}), 7.38-7.41 (m, 1H, CH_{Ar}), 7.49–7.55 (m, 1H, CH_{Ar}), 7.76 (br s, 1H, CH_{Ar}), 8.36 (d, ³*J*=8.3 Hz, 1H, CH_{Ar}), 12.02 (br s, 1H, NH), 13.25 (s, 1H, OH). ¹³C NMR (DMSO- d_6 , 62 MHz): δ =15.0 (CH₃), 28.8 (CH₂), 107.9 (C_{Ar}), 111.7 113.7, 116.5 (CH_{Ar}), 118.1 (C_{Ar}), 123.0, 123.7, 129.6 (CH_{Ar}), 135.2, 135.5, 151.8, 161.5 (C_{Ar}), 165.4 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3172 (w), 3042 (w), 2956 (m), 2928 (m), 2867 (m), 1650 (s), 1620 (m), 1594 (w), 1556 (m), 1462 (w), 1453 (m), 1430 (m), 1371 (w), 1347 (m), 1299 (m), 1224 (m), 1174 (m), 1128 (w), 1100 (w), 1058 (w), 1014 (m), 948 (w), 909 (w), 846 (m), 770 (w), 747 (s), 720 (m), 680 (m), 633 (m), 553 (m). MS (EI, 70 eV): *m/z* (%)=240 ([M]⁺+1, 17), 239 ([M]⁺, 100), 238 (32), 207 (13), 196 (11). HRMS (EI): Calcd for C₁₅H₁₃NO₂: 239.09408; found: 239.094189.

4.5.6. 9-*Ethyl*-7-*hydroxy*-8-*methylphenanthridin*-6(5*H*)-*one* (**7***f*). Starting with **6***f* (0.228 g, 0.7 mmol), **7***f* was isolated (0.097 g,

53%) by column chromatography (silica gel, heptanes/ EtOAc=30:1 \rightarrow 20:1) as a colourless solid, mp=265-267 °C. ¹H NMR (DMSO- d_6 , 250 MHz): $\delta = 1.14$ (t, ${}^{3}J = 7.0$ Hz, 3H, CH₂CH₃), 2.18 (s, 3H, CH₃), 2.77 (q, ³*J*=7.1 Hz, 2H, CH₂CH₃), 7.26–7.32 (m, 1H, CH_{Ar}), 7.36– 7.39 (m, 1H, CH_{Ar}), 7.45–7.51 (m, 1H, CH_{Ar}), 7.70 (s, 1H, CH_{Ar}), 8.34 (d, ³*J*=7.8 Hz, 1H, CH_{Ar}), 11.95 (br s, 1H, NH), 13.62 (s, 1H, OH). ¹³C NMR (DMSO- d_6 , 62 MHz): δ =13.8, 15.4 (CH₃), 28.8 (CH₂), 107.4 (C_{Ar}), 111.8, 116.4 (CH_{Ar}), 118.1 (C_{Ar}), 123.0, 123.3 (CH_{Ar}), 126.0 (C_{Ar}), 129.2 (CH_{Ar}), 132.4, 135.1, 149.5, 159.3, (C_{Ar}), 165.0 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3172 (w), 3041 (w), 2955 (m), 2930 (m), 2866 (m), 1651 (s), 1622 (m), 1590 (w), 1550 (m), 1457 (w), 1435 (m), 1369 (w), 1345 (m), 1300 (m), 1220 (m), 1170 (m), 1128 (w), 1098 (w), 1060 (w), 1012 (m), 945 (w), 908 (w), 845 (m), 770 (w), 746 (s), 719 (m), 682 (m), 633 (m), 552 (m). MS (EI, 70 eV): m/z (%)=255 ([M]⁺+2, 11), 254 $([M]^++1, 26), 253 ([M]^+, 100), 252 (45), 239 (10), 238 (13), 226 (10),$ 225 (18), 224 (24), 84 (10), 66 (18), 44 (35), 43 (12). Anal. Calcd for C₁₆H₁₅NO₂: C 75.30, H 5.48, N 5.85; found.: C 75.38, H 5.43, N 5.75.

4.5.7. 8,9-Diethyl-7-hydroxyphenanthridin-6(5H)-one (7g). Starting with 6g (0.171 g, 0.5 mmol), 7g was isolated (0.069 g, 52%) by column chromatography (silica gel, heptanes/EtOAc= $30:1 \rightarrow 20:1$) as a colourless solid, mp=242-244 °C. ¹H NMR (DMSO-*d*₆, 250 MHz): $\delta = 1.13$ (t, ³*J*=7.0 Hz, 3H, CH₂CH₃), 1.27 (t, ³*J*=7.0 Hz, 3H, CH₂CH₃), 2.66-2.74 (m, 2H, CH2CH3), 2.76-2.83 (m, 2H, CH2CH3), 7.26-7.29 (m, 1H, CH_{Ar}), 7.36–7.40 (m, 1H, CH_{Ar}), 7.44–7.49 (m, 1H, CH_{Ar}), 7.74 (s, 1H, CH_{Ar}), 8.34 (d, ³*J*=7.8 Hz, 1H, CH_{Ar}), 11.96 (br s, 1H, NH), 13.62 (s, 1H, OH). ¹³C NMR (DMSO- d_6 , 62 MHz): δ =15.4, 16.8 (CH₃), 18.1, 26.0 (CH₂), 107.4 (C_{Ar}), 111.9, 116.4 (CH_{Ar}), 118.3 (C_{Ar}), 123.0, 123.3 (CH_{Ar}), 128.2 (C_{Ar}), 129.2 (CH_{Ar}), 132.4, 135.1, 149.5, 159.2, (C_{Ar}), 165.7 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3173 (w), 3035 (w), 2953 (m), 2927 (m), 2865 (m), 1651 (s), 1628 (m), 1592 (w), 1562 (m), 1460 (w), 1455 (m), 1433 (m), 1370 (w), 1347 (m), 1297 (m), 1222 (m), 1170 (m), 1123 (w), 1115 (w), 1058 (w), 1012 (m), 945 (w), 909 (w), 845 (m), 768 (w), 745 (s), 723 (m), 678 (m), 630 (m), 552 (m). MS (EI, 70 eV): m/z (%)=267 ([M]⁺, 41), 253 (17), 252 (100). HRMS (EI): Calcd for C₁₇H₁₇NO₂: 267.12538; found: 267.125175.

4.5.8. 9-Ethyl-8-hexyl-7-hydroxyphenanthridin-6(5H)-one (7h). Starting with 6h (0.255 g, 0.7 mmol), 7h was isolated (0.109 g, 51%) by column chromatography (silica gel, heptanes/ EtOAc=30:1 \rightarrow 20:1) as a colourless solid, mp=230-232 °C. ¹H NMR (CD₃OD, 250 MHz): δ=0.96-0.99 (m, 3H, (CH₂)₅CH₃), 1.03-1.08 (m, 3H, CH₂CH₃), 1.34–1.41 (m, 8H, 4×CH₂), 2.87–2.95 (m, 4H, 2×CH₂), 7.24-7.30 (m, 1H, CH_{Ar}), 7.44-7.45 (m, 1H, CH_{Ar}), 7.48-7.51 (m, 1H, CH_{Ar}), 7.74 (s, 1H, CH_{Ar}), 8.29 (d, ³*J*=7.8 Hz, 1H, CH_{Ar}). ¹³C NMR (CD₃OD, 62 MHz): δ =14.5, 15.4 (CH₃), 23.5, 26.4, 27.1, 27.6, 29.8, 32.8 (CH₂), 108.8 (C_{Ar}), 124.4, 117.0 (CH_{Ar}), 120.0 (C_{Ar}), 122.7, 124.1 (CH_{Ar}), 129.1 (C_{Ar}), 130.0 (CH_{Ar}), 134.0, 136.9, 151.0, 161.1, (C_{Ar}), 167.5 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =2971 (m), 2910 (w), 2831 (m), 2758 (m), 2719 (m), 2487 (m), 2096 (w), 1586 (w), 1467 (m), 1397 (w), 1330 (w), 1202 (w), 1151 (m), 1103 (m), 978 (m), 957 (m), 840 (w), 805 (w), 612 (m). MS (EI, 70 eV): m/z (%)=324 ([M]⁺+1, 11), 323 ([M]⁺, 31), 266 (11), 254 (19), 253 (78), 252 (100), 237 (10). HRMS (EI): Calcd for C₂₁H₂₅NO₂: 323.18798; found: 323.18.7220.

4.5.9. 9-*Ethyl*-8-*heptyl*-7-*hydroxyphenanthridin*-6(5*H*)-*one* (**7i**). Starting with **6i** (0.265 g, 0.7 mmol), **7i** was isolated (0.109 g, 49%) by column chromatography (silica gel, heptanes/ EtOAc=30:1 \rightarrow 20:1) as a colourless solid, mp=232-234 °C. ¹H NMR (DMSO-*d*₆, 250 MHz): δ =0.85-0.86 (m, 3H, (CH₂)₆CH₃), 1.10 (t, ³*J*=7.1 Hz, 3H, CH₂CH₃), 1.26-1.29 (m, 10H, 5×CH₂), 2.63-2.72 (m, 2H, CH₂), 2.78 (q, ³*J*=7.7 Hz, 2H, CH₂CH₃), 7.23-7.29 (m, 1H, CH_{Ar}), 7.36-7.41 (m, 1H, CH_{Ar}), 7.46-7.52 (m, 1H, CH_{Ar}), 7.74 (s, 1H, CH_{Ar}), 8.34 (d, ³*J*=7.7 Hz, 1H, CH_{Ar}), 11.94 (br s, 1H, NH), 13.63 (s, 1H, OH). ¹³C NMR (DMSO-*d*₆, 62 MHz): δ =13.9, 15.4 (CH₃), 22.0, 26.0, 28.5, 28.6, 29.1, 29.3, 31.3 (CH₂), 107.4 (CA_A), 111.8, 116.4 (CH_{Ar}), 118.3 (CA_A), 123.1, 123.3 (CH_{Ar}), 126.1 (C_{Ar}), 129.3 (CH_{Ar}), 132.4, 135.2, 149.5, 159.3 (C_{Ar}), 165.7 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3172 (w), 3062 (w), 3022 (w), 2956 (m), 2926 (m), 2867 (m), 1717 (w), 1651 (s), 1623 (m), 1595 (m), 1554 (m), 1460 (w), 1455 (m), 1437 (m), 1370 (m), 1347 (m), 1300 (m), 1225 (m), 1180 (m), 1126 (w), 1098 (w), 1056 (w), 1015 (m), 948 (w), 908 (w), 845 (m), 770 (w), 747 (s), 720 (m), 682 (m), 635 (m), 552 (m). MS (EI, 70 eV): *m/z* (%)=338 ([M]⁺+1, 8), 337 ([M]⁺, 34), 308 (12), 266 (13), 254 (15), 253 (72), 252 (100), 237 (10), 209 (9), 208 (12), 207 (39), 191 (9), 44 (11). HRMS (EI): Calcd for C₂₂H₂₇NO₂: 337.20363; found: 337.203119.

4.5.10. 9-Ethyl-7-hydroxy-8-octylphenanthridin-6(5H)-one (7j). Starting with 6j (0.347 g, 0.8 mmol), 7j was isolated (0.147 g, 50%) by column chromatography (silica gel, heptanes/ EtOAc=30:1 \rightarrow 20:1) as a colourless solid, mp=241–243 °C. ¹H NMR (DMSO- d_6 , 250 MHz): δ =0.85–0.87 (m, 3H, (CH₂)₇CH₃), 1.08 (t, ^{3}J =7.1 Hz, 3H, CH₂CH₃), 1.24–1.27 (m, 12H, 6×CH₂), 2.60–2.67 (m, 2H, CH₂), 2.78 (q, ³*J*=7.4 Hz, 2H, *CH*₂CH₃), 7.26–7.32 (m, 1H, CH_{Ar}), 7.36-7.42 (m, 1H, CH_{Ar}), 7.46-7.49 (m, 1H, CH_{Ar}), 7.74 (s, 1H, CH_{Ar}), 8.33 (d, ³*J*=7.7 Hz, 1H, CH_{Ar}), 11.96 (br s, 1H, NH), 13.62 (s, 1H, OH). ¹³C NMR (DMSO- d_6 , 62 MHz): δ =13.8, 15.3 (CH₃), 22.0, 26.0, 26.8, 28.5, 28.6, 29.1, 29.3, 31.3 (CH₂), 107.3 (C_{Ar}), 111.6, 116.4 (CH_{Ar}), 118.3 (C_{Ar}), 123.0, 123.3 (CH_{Ar}), 128.3 (C_{Ar}), 129.3 (CH_{Ar}), 132.3, 135.2, 150.0, 159.2 (C_{Ar}), 165.7 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3169 (w), 3082 (w), 3020 (w), 2963 (m), 2921 (m), 2875 (m), 1716 (w), 1650 (s), 1594 (m), 1500 (m), 1430 (m), 1408 (s), 1372 (m), 1330 (m), 1319 (m), 1295 (m), 1235 (m), 1194 (m), 1112 (w), 1091 (m), 1047 (w), 1008 (w), 940 (w), 912 (w), 853 (m), 810 (s), 798 (m), 750 (s), 698 (m), 687 (m), 639 (m), 592 (m), 529 (m). MS (EI, 70 eV): m/z (%)=352 ([M]⁺+1, 11), 351 ([M]⁺, 49), 253 (88), 252 (100), 237 (8). HRMS (EI): Calcd for C23H29NO2: 351.22063; found: 351.220119.

4.5.11. 7-Hydroxy-9-propylphenanthridin-6(5H)-one (**7k**). Starting with **6k** (0.563 g, 1.8 mmol), **7k** was isolated (0.240 g, 56%) by column chromatography (silica gel, heptanes/EtOAc=30:1→20:1) as a colourless solid, mp=240-241 °C. ¹H NMR (DMSO-*d*₆, 250 MHz): δ =0.92 (t, ³*J*=7.1 Hz, 3H, CH₃), 1.63-1.72 (m, 2H, CH₂), 2.68 (t, ³*J*=7.1 Hz, 2H, CH₂), 6.81 (br s, 1H, CH_{Ar}), 7.25-7.29 (m, 1H, CH_{Ar}), 7.32-7.39 (m, 1H, CH_{Ar}), 7.47-7.53 (m, 1H, CH_{Ar}), 7.74 (br s, 1H, CH_{Ar}), 8.35 (d, ³*J*=7.7 Hz, 1H, CH_{Ar}), 12.01 (br s, 1H, NH), 13.25 (s, 1H, OH). ¹³C NMR (DMSO-*d*₆, 62 MHz): δ =13.6 (CH₃), 23.6, 38.6 (CH₂), 107.9 (C_{Ar}), 112.3, 114.3, 116.5 (CH_{Ar}), 118.2 (C_{Ar}), 123.1, 123.7, 129.7 (CH_{Ar}), 135.2, 135.5, 150.2, 161.4 (C_{Ar}), 165.7 (C=O). MS (EI, 70 eV): *m*/*z* (%)=253 ([M]⁺, 40), 225 (100), 196 (20), 177 (30), 149 (60), 115 (15), 89 (12), 69 (20), 44 (70), 43 (9). HRMS (EI): Calcd for C₁₆H₁₅NO₂: 253.10973; found: 253.10991.

4.5.12. 7-Hydroxy-8-methyl-9-propylphenanthridin-6(5H)-one (7I). Starting with **6I** (0.480 g, 1.45 mmol), **7I** was isolated (0.190 g, 50%) by column chromatography (silica gel, heptanes/EtOAc=30:1→20:1) as a colourless solid, mp=245-247 °C. ¹H NMR (DMSO-*d*₆, 250 MHz): δ =0.90 (t, ³*J*=7.4 Hz, 3H, CH₃), 1.50-1.59 (m, 2H, CH₂), 2.12 (s, 3H, CH₃), 2.65 (t, ³*J*=7.5 Hz, 2H, CH₂), 7.18-7.24 (m, 1H, CH_{Ar}), 7.28-7.32 (m, 1H, CH_{Ar}), 7.32-7.43 (m, 1H, CH_{Ar}), 7.64 (s, 1H, CH_{Ar}), 8.25 (d, ³*J*=8.2 Hz, 1H, CH_{Ar}), 11.89 (br s, 1H, NH), 13.55 (s, 1H, OH). ¹³C NMR (DMSO-*d*₆, 62 MHz): δ =10.5, 13.8 (CH₃), 23.0, 35.9 (CH₂), 107.4 (C_{Ar}), 112.3, 116.6 (CH_{Ar}), 118.5, 121.5 (C_{Ar}), 123.0, 123.3, 129.3 (CH_{Ar}), 135.2, 148.6, 159.4 (C_{Ar}), 165.7 (C=0). MS (EI, 70 eV): *m/z* (%)=267 ([M]⁺, 100), 252 (76), 239 (75), 224 (34), 210 (5), 190 (7), 165 (7), 78 (34), 63 (43), 43 (9). HRMS (EI): Calcd for C₁₇H₁₇NO₂: 267.12535; found: 267.12538.

4.5.13. 8-Ethyl-7-hydroxy-9-propylphenanthridin-6(5H)-one (**7m**). Starting with **6m** (0.202 g, 0.6 mmol), **7m** was isolated (0.100 g, 63%) by column chromatography (silica gel, heptanes/EtOAc= $30:1 \rightarrow 20:1$) as a colourless solid, mp= $232-234 \,^{\circ}C. \,^{1}H$ NMR

(DMSO-*d*₆, 250 MHz): δ =1.00 (t, ³*J*=8.1 Hz, 3H, CH₃), 1.13 (t, ³*J*=7.2 Hz, 3H, CH₃), 1.66 (q, ³*J*=7.3 Hz, 2H, CH₂), 2.66–2.77 (m, 4H, CH₂), 7.26–7.36 (m, 2H, CH_Ar), 7.49–7.58 (m, 2H, CH_Ar), 8.34 (d, ³*J*=8.0 Hz, 1H, CH_Ar), 11.90 (br s, 1H, NH), 13.62 (s, 1H, OH). ¹³C NMR (DMSO-*d*₆, 62 MHz): δ _C=13.9, 14.0 (CH₃), 18.3, 24.0, 35.0 (CH₂), 107.5 (C_Ar), 112.6, 116.6 (CH_Ar), 118.4, 121.6 (C_Ar), 123.0, 123.8, 131.3 (CH_Ar), 132.3, 135.2, 147.8, 159.2 (C_Ar), 165.7 (C=O). MS (EI, 70 eV): *m*/*z* (%)=281 ([M]⁺, 100), 238 (76), 207 (12), 224 (30), 190 (7), 165 (5), 78 (40), 63 (23), 43 (8). HRMS (EI): Calcd for C₁₇H₁₇NO₂: 267.12535; found: 267.12538. Anal. Calcd for C₁₈H₁₉NO₂: C 76.84, H 6.81, N 4.98; found.: C 76.90, H 6.60, N 4.90.

4.5.14. 8-Hexyl-7-hydroxy-9-propylphenanthridin-6(5H)-one (**7n**). Starting with **6n** (0.250 g, 0.62 mmol), **7n** was isolated (0.150 g, 74%) by column chromatography (silica gel, heptanes/EtOAc=30:1→20:1) as a colourless solid, mp=237-239 °C. ¹H NMR (CDCl₃, 250 MHz): δ =0.83 (t, ³*J*=7.8 Hz, 3H, CH₃), 0.99 (t, ³*J*=7.5 Hz, 3H, CH₃), 1.26-1.48 (m, 8H, CH₂), 1.60-1.69 (m, 2H, CH₂), 2.66-2.72 (m, 4H, CH₂), 7.11-7.15 (m, 1H, CH_{Ar}), 7.21-7.25 (m, 1H, CH_{Ar}), 7.37-7.40 (m, 1H, CH_{Ar}), 7.48 (s, 1H, CH_{Ar}), 8.10 (d, ³*J*=8.5 Hz, 1H, CH_{Ar}), 9.49 (br s, 1H, NH), 13.92 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ C=14.1, 14.2 (CH₃), 22.6, 24.4, 25.8, 29.5, 29.8, 31.7, 36.0 (CH₂), 107.5 (C_{Ar}), 112.0, 112.6, 116.2 (CH_{Ar}), 119.4 (C_{Ar}), 123.2 (CH_{Ar}), 123.5 (C_{Ar}), 127.9 (CH_{Ar}), 129.1, 131.4, 133.5, 148.7 (C_{Ar}), 160.0 (C=O). MS (EI 70 eV): *m/z* (%)=337 ([M]⁺, 42), 280 (9), 266 (100), 225 (19), 161 (9), 128 (40), 83 (24), 69 (43) 43 (9). HRMS (EI): Calcd for C₂₂H₂₇NO₂: 337.20363; found: 337.20310.

4.5.15. 9-Butyl-7-hydroxyphenanthridin-6(5H)-one (70). Starting with **60** (0.164 g, 0.5 mmol), **70** was isolated (0.931 g, 70%) by column chromatography (silica gel, heptanes/EtOAc= $30:1 \rightarrow 20:1$) as a colourless solid, mp=234-235 °C. ¹H NMR (DMSO- d_6 , 250 MHz): $\delta = 0.92$ (t, ³*J*=7.1 Hz, 3H, (CH₂)₃CH₃), 1.27–1.41 (m, 2H, CH₂), 1.59– 1.71 (m, 2H, CH₂), 2.71 (t, ³*J*=7.6 Hz, 2H, *CH*₂(CH₂)₂CH₃), 6.83 (s, 1H, CH_{Ar}), 7.28–7.33 (m, 1H, CH_{Ar}), 7.38–7.41 (m, 1H, CH_{Ar}), 7.49–7.55 (m, 1H, CH_{Ar}), 7.75 (s, 1H, CH_{Ar}), 8.35 (d, ³*J*=8.8 Hz, 1H, CH_{Ar}), 12.02 (br s, 1H, NH), 13.26 (s, 1H, OH). ¹³C NMR (DMSO-*d*₆, 62 MHz): δ=13.7 (CH₃), 21.7, 32.6, 35.5 (CH₂), 107.9 (C_{Ar}), 112.2, 114.2, 116.5 (CH_{Ar}), 118.2 (C_{Ar}), 123.0, 123.7, 129.7 (CH_{Ar}), 135.1, 135.5, 150.5, 161.5 (C_{Ar}) 165.4 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3170 (w), 3075 (w), 3012 (w), 2953 (m), 2923 (m), 2856 (m), 1659 (s), 1626 (m), 1595 (m), 1552 (m), 1503 (m), 1455 (w), 1426 (m), 1406 (m), 1378 (m), 1349 (m), 1296 (m), 1229 (m), 1163 (m), 1126 (w), 1078 (w), 1037 (w), 1006 (m), 938 (w), 916 (w), 862 (m), 805 (m), 774 (m), 747 (s), 680 (m), 639 (m), 617 (m), 553 (m). MS (EI, 70 eV): m/z (%)=268 ([M]⁺+1, 8), 267 ([M]⁺, 53), 226 (24), 225 (100), 224 (23), 196 (10), 178 (8), 78 (24), 63 (26), 44 (10). HRMS (EI): Calcd for C₁₇H₁₇NO₂: 267.12538; found: 267.125349.

4.5.16. 9-Butyl-7-hydroxy-8-methylphenanthridin-6(5H)-one (**7p**). Starting with **6p** (0.171 g, 0.5 mmol), **7p** was isolated (0.076 g, 54%) by column chromatography (silica gel, heptanes/ EtOAc=30:1 \rightarrow 20:1) as a colourless solid, mp=257-259 °C. ¹H NMR (DMSO- d_6 , 250 MHz): δ =0.94 (t, ${}^{3}J$ =7.1 Hz, 3H, (CH₂)₃CH₃), 1.36– 1.44 (m, 2H, CH₂), 1.52–1.61 (m, 2H, CH₂), 2.20 (s, 3H, CH₃), 2.76 (t, ³*J*=7.4 Hz, 2H, *CH*₂(CH₂)₂CH₃), 7.26–7.32 (m, 1H, CH_{Ar}), 7.36–7.39 (m, 1H, CH_{Ar}), 7.46–7.52 (m, 1H, CH_{Ar}), 7.73 (s, 1H, CH_{Ar}), 8.34 (d, ³*J*=8.1 Hz, 1H, CH_{Ar}), 11.96 (br s, 1H, NH), 13.62 (s, 1H, OH). ¹³C NMR $(DMSO-d_6, 62 \text{ MHz}): \delta = 10.6, 13.7 (CH_3), 22.1, 31.9, 33.5 (CH_2), 107.3$ (C_{Ar}), 112.4, 116.4 (CH_{Ar}), 118.3, 121.3 (C_{Ar}), 123.0, 123.3, 129.2 (CH_{Ar}), 132.1, 135.1, 148.6, 159.2 (C_{Ar}) 165.6 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3305 (w), 3169 (w), 3017 (w), 2953 (m), 2932 (m), 2860 (m), 1731 (w), 1657 (s), 1651 (s), 1632 (m), 1595 (m), 1553 (m), 1503 (m), 1449 (w), 1409 (m), 1372 (m), 1348 (m), 1304 (m), 1268 (m), 1236 (m), 1195 (m), 1113 (m), 1098 (m), 1057 (m), 935 (m), 857 (m), 843 (m), 805 (s), 789 (s), 743 (s), 713 (m), 668 (m), 629 (m), 620 (m), 560 (s), 539 (s). MS (EI, 70 eV): m/z (%)=282 ([M]⁺+1, 12), 281 ([M]⁺, 57), 252 (15), 240 (16), 239 (100), 238 (15), 224 (31). HRMS (EI): Calcd for C₁₈H₁₉NO₂: 281.14103; found: 281.141039.

4.5.17. 9-Butyl-8-hexyl-7-hydroxyphenantridin-6(5H)-one (7q). Starting with 6q (0.098 g, 0.6 mmol), 7q was isolated (0.097 g, 50%) by column chromatography (silica gel, heptanes/ EtOAc=30:1 \rightarrow 20:1) as a colourless solid. mp=220-222 °C. ¹H NMR (DMSO- d_6 , 250 MHz): δ =0.84–0.90 (m, 3H, (CH₂)₅CH₃),0.95 (t, ${}^{3}I = 7.3 \text{ Hz}, 3\text{H}, (CH_{2})_{3}CH_{3}, 1.22 - 1.31 \text{ (m, 6H, } 3 \times CH_{2}), 1.37 - 1.43 \text{ (m, }$ 4H, 2×CH₂), 1.57–1.64 (m, 2H, CH₂), 2.63–2.77 (m, 4H, 2×CH₂), 7.26-7.32 (m, 1H, CHAr), 7.36-7.39 (m, 1H, CHAr), 7.46-7.51 (m, 1H, CH_{Ar}), 7.73 (s, 1H, CH_{Ar}), 8.33 (d, ³*J*=8.7 Hz, 1H, CH_{Ar}), 11.95 (br s, 1H, NH), 13.63 (s, 1H, OH).¹³C NMR (DMSO- d_6 , 62 MHz): δ =13.7, 13.9 (CH₃), 21.9, 22.2, 24.9, 28.9, 30.6, 31.0, 32.7, 33.0 (CH₂), 107.4 (C_{Ar}), 112.5, 116.4 (CH_{Ar}), 118.3 (C_{Ar}), 121.3, 123.3 (CH_{Ar}), 126.2 (C_{Ar}), 129.2 (CH_{Ar}), 132.3, 135.1, 148.2, 159.3 (C_{Ar}) 165.7 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3166 (w), 2951 (m), 2923 (m), 2867 (m), 1714 (w), 1650 (s), 1626 (m), 1597 (m), 1551 (w), 1502 (m), 1454 (w), 1409 (m), 1376 (w), 1349 (m), 1309 (m), 1267 (m), 1233 (m), 1195 (m), 1101 (w), 1041 (w), 1014 (w), 937 (w), 872 (m), 845 (m), 809 (m), 786 (s), 747 (s), 729 (m), 672 (m), 659 (m), 621 (w), 559 (m), 535 (w). MS (EI, 70 eV): m/z (%)=352 ([M]⁺+1, 27), 351 ([M]⁺, 90), 322 (17), 294 (29), 281 (42), 280 (86), 266 (13), 252 (18), 250 (18), 240 (18), 239 (87), 238 (100), 226 (11), 225 (13), 224 (12), 210 (15), 63 (13). HRMS (EI): Calcd for C₂₃H₂₉NO₂: 351.21958; found: 351.219174.

4.5.18. 9-Ethyl-8-hexyl-7-hydroxy-10-methylphenanthridin-6(5H)one (7r). Starting with 6r (0.199 g. 0.5 mmol). 7r was isolated (0.084 g, 50%) by column chromatography (silica gel, heptanes/ EtOAc=30:1 \rightarrow 20:1) as a colourless solid, mp=193-194 °C. ¹H NMR (DMSO- d_6 , 250 MHz): δ =0.87 (t, ${}^{3}I$ =6.5 Hz, 3H, CH₂CH₃), 1.16 (t, ${}^{3}J=7.1$ Hz, 3H, (CH₂)₅CH₃), 1.25–1.36 (m, 6H, 3×CH₂), 2.50 (s, 3H, CH₃), 2.67–2.73 (m, 4H, 2×CH₂), 2.82 (q, ${}^{3}J$ =7.7 Hz, 2H, CH₂CH₃), 7.23–7.29 (m, 1H, CH_{Ar}), 7.38–7.41 (m, 1H, CH_{Ar}), 7.43–7.49 (m, 1H, CH_{Ar}), 8.23 (d, ³*J*=8.0 Hz, 1H, CH_{Ar}), 11.93 (br s, 1H, NH), 13.95 (s, 1H, OH). ¹³C NMR (DMSO- d_6 , 62 MHz): δ =13.8, 14.1, 19.5 (CH₃), 22.0, 23.2, 25.5, 29.0, 29.3, 31.1 (CH₂), 108.1 (C_{Ar}), 116.1 (CH_{Ar}) 119.3 (C_{Ar}), 121.8 (CH_{Ar}), 122.1, 126.6 (C_{Ar}), 128.3, 128.4 (CH_{Ar}), 132.1, 135.8, 149.0, 157.7 (C_{Ar}), 166.1 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3305 (w), 3169 (w), 3033 (w), 2955 (m), 2921 (m), 2856 (m), 1722 (w), 1656 (m), 1586 (m), 1549 (m), 1503 (m), 1465 (m), 1408 (s), 1376 (m), 1344 (m), 1291 (m), 1275 (m), 1261 (m), 1180 (m), 1164 (m), 1128 (m), 1113 (m), 1011 (m), 981 (w), 945 (w), 911 (m), 857 (m), 810 (s), 751 (m), 720 (m), 692 (m), 665 (m), 634 (w), 591 (m), 556 (m), 538 (m). MS (EI, 70 eV): *m*/*z* (%)=338 ([M]⁺+1, 25), 337 ([M]⁺, 84), 308 (10), 280 (15), 267 (86), 266 (100), 250 (14), 238 (12), 237 (12). HRMS (EI): Calcd for C₂₂H₂₇NO₂: 337.20363; found: 337.203114.

4.5.19. 10-Chloro-7-hydroxy-9-propylphenanthridin-6(5H)-one (7s). Starting with 6s (0.174 g, 0.5 mmol), 7s was isolated (0.070 g, 49%) by column chromatography (silica gel, heptanes/ EtOAc=30:1 \rightarrow 20:1) as a colourless solid, mp=258-260 °C. ¹H NMR (DMSO- d_6 , 250 MHz): δ =0.99 (t, ${}^{3}J$ =8.1 Hz, 3H, CH₃), 1.62–1.71 (m, 2H, CH₂CH₂CH₃), 2.82 (t, ³*J*=7.4 Hz, 2H, CH₂CH₂CH₃), 7.02 (s, 1H, CH_{Ar}), 7.28–7.34 (m, 1H, CH_{Ar}), 7.42–7.46 (m, 1H, CH_{Ar}), 7.54–7.60 (m, 1H, CH_{Ar}), 9.35 (d, ³*J*=8.7 Hz, 1H, CH_{Ar}), 12.27 (br s, 1H, NH), 14.00 (s, 1H, OH). ¹³C NMR (DMSO- d_6 , 62 MHz): δ =13.7 (CH₃), 22.1, 36.7 (CH₂), 110.1 (C_{Ar}), 116.7, 117.0 (CH_{Ar}) 117.5, 118.6 (C_{Ar}), 122.3, 127.3, 130.0 (CH_{Ar}), 131.9, 136.2, 149.1, 160.4 (C_{Ar}), 165.0 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3116 (w), 3129 (w), 3078 (w), 3014 (w), 2957 (m), 2933 (m), 2868 (m), 2743 (m), 1656 (s), 1610 (m), 1580 (m), 1552 (m), 1503 (m), 1465 (m), 1408 (s), 1338 (m), 1290 (m), 1275 (m), 1242 (m), 1190 (m), 1174 (m), 1134 (m), 1090 (m), 1040 (w), 1018 (w), 944 (w), 923 (w), 872 (m), 850 (m), 808 (s), 784 (m), 772 (m), 755 (s), 711 (s), 661 (m), 627 (m), 610 (w), 598 (m), 548 (m). MS (EI, 70 eV): m/z (%)=289 ([M⁺] ³⁷Cl, 27), 287 ([M⁺] ³⁵Cl, 88), 261 (30), 260 (15), 259 (100), 253 (12), 252 (31), 225 (40), 224 (40), 211 (10), 196 (20), 178 (10), 177 (11), 84 (12), 78 (70), 66 (11), 63 (78), 61 (13), 45 (10), 44 (12). HRMS (EI): Calcd for C₁₆H₁₄NO₂Cl: 287.07076; found: 287.070305.

4.6. General procedure for the synthesis of aminobiaryls 8a,b

To a stirred methanol suspension (25 mL) of Pd/C (10 mol %) was added **6t,u** (1.0 equiv). The mixture was set under a hydrogen atmosphere. After stirring for 48 h at 20 °C, the reaction mixture was filtered (Celite) and the filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, heptanes/EtOAc=2:1).

4.6.1. *Methyl* 3'-amino-3-hydroxy-4,5-dimethylbiphenyl-2-carboxylate (**8a**). Starting with **6t** (0.150 g, 0.5 mmol), **8a** was isolated (0.110 g, 81%) by column chromatography (silica gel, heptanes/ EtOAc=30:1 \rightarrow 20:1) as a colourless solid, mp=140–141 °C. ¹H NMR (CDCl₃, 250 MHz): δ =2.13 (s, 3H, CH₃), 2.21 (s, 3H, CH₃), 3.41 (br m, 2H, NH₂), 3.44 (s, 3H, OCH₃), 6.40 (s, 1H, CH_{Ar}), 6.49–6.57 (m, 3H, CH_{Ar}), 7.00–7.06 (m, 1H, CH_{Ar}), 10.86 (s, 1H, OH). ¹³C NMR (CDCl₃, 62 MHz): δ _C=11.4, 20.4 (CH₃), 51.6 (OCH₃), 109.1 (C_{Ar}), 113.3, 114.9, 119.0 (CH_{Ar}), 123.6 (C_{Ar}), 123.8, 128.3, (CH_{Ar}), 141.6, 142.8, 144.2, 145.7, 159.2 (C_{Ar}), 172.0 (C=O). GC–MS (EI, 70 eV): *m/z* (%)=271 ([M]⁺, 72), 239 (100), 224 (87), 210 (13), 196 (21), 180 (6), 167 (13), 135 (5), 115 (5), 98 (6), 65 (4). HRMS (EI): Calcd for C₁₆H₁₇NO₃: 271.12029; found: 271.12050.

4.6.2. *Ethyl* 3'-amino-4-ethyl-3-hydroxy-5-methylbiphenyl-2-carboxylate (**8b**). Starting with **6u** (0.250 g, 0.8 mmol), **8b** was isolated (0.184 g, 78%) by column chromatography (silica gel, heptanes/EtOAc=30:1 \rightarrow 20:1) as a colourless solid, mp=145–147 °C. ¹H NMR (CDCl₃, 300 MHz): δ =0.74 (t, ³*J*=7.4 Hz, 3H, CH₃), 1.07 (t, ³*J*=7.5 Hz, 3H, CH₃), 2.21 (s, 3H, CH₃), 2.63 (q, ³*J*=7.4 Hz, 2H, CH₂), 3.42–3.60 (br m, 2H, NH₂), 3.93 (q, ³*J*=7.5 Hz, 2H, OCH₂), 6.44–6.48 (m, 1H, CH_{Ar}), 6.49–6.54 (m, 3H, CH_{Ar}), 6.96–7.03 (m, 1H, CH_{Ar}), 10.95 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ _C=13.1, 13.2, 19.4 (CH₃), 19.6 (CH₂), 60.7 (OCH₂), 109.0 (C_{Ar}), 113.2, 115.1, 119.0, 123.9, 128.3 (CH_{Ar}), 129.6, 141.8, 141.9, 144.4, 145.7, 159.3 (C_{Ar}), 171.5 (C=O). GC–MS (EI, 70 eV): *m/z* (%)=299 ([M]⁺, 96), 253 (64), 238 (100), 220 (34), 210 (16), 180 (15), 152 (7), 128 (5), 90 (7), 65 (3). HRMS (EI): Calcd for C₁₈H₂₁NO₃: 299.15160; found: 299.15146.

4.7. General procedure for the synthesis of 3-ethoxy-2-nitro-1-phenylprop-2-en-1-ones 12a-c

To a solution of **11a–c in** acetic anhydride (1.0 equiv/1.0 equiv of **11a–c**) was added triethyl orthoformate (1.2 equiv). The solution was stirred at 120 °C for 6 h. The solvent was concentrated in vacuo and the residue was purified by chromatography (silica gel, hep-tanes/EtOAc) to give **12a–c**.

4.7.1. 3-Ethoxy-2-nitro-1-phenylprop-2-en-1-one (**12a**). Starting with **11a** (3.50 g, 21.2 mmol), triethyl orthoformate (4.20 g, 26.5 mmol) and acetic anhydride (7.00 g, 44.3 mmol), **12a** was isolated as a reddish viscous oil (3.75 g, 80%). ¹H NMR (300 MHz, CDCl₃): δ =1.27 (t, ³*J*=7.0 Hz, 3H, OCH₂CH₃), 4.20 (q, ³*J*=6.9 Hz, 2H, OCH₂CH₃), 7.37–7.42 (m, 3H, CH_Ar), 7.76–7.79 (m, 2H, CH_Ar), 8.28 (s, 1H, CH_{Olf}). ¹³C NMR (75 MHz, CDCl₃): δ =15.1 (CH₃), 74.2 (OCH₂), 128.1 (C), 128.8 (2×CH_Ar), 129.0 (2×CH_Ar), 134.1 (CH_Ar), 135.9 (C_Ar), 164.1 (CH_{Olf}), 185.3 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3063 (w), 2935 (w), 1778 (w), 1674 (m), 1597 (w), 1562 (w), 1535 (m), 1500 (m), 1449 (w), 1338 (w), 1300 (m), 1222 (m), 1153 (w), 1124 (w), 1001 (w), 908 (m), 873 (w), 728 (s), 689 (m), 648 (w). MS (EI 70 eV): *m/z* (%)=221 ([M]⁺, 8), 128 (12), 105 (100), 100 (41), 94 (16), 7 (70), 72 (17), 51

(19), 29 (11). HRMS (EI): Calcd for C₁₁H₁₁NO₄: 221.06826; found: 221.068910.

4.7.2. 3-*Ethoxy-2-nitro-1-o-tolylprop-2-en-1-one* (**12b**). Starting with **11b** (2.5 g, 14.0 mmol), triethyl orthoformate (3.00 g, 18.9 mmol) and acetic anhydride (5.00 g, 31.65 mmol), **12b** was isolated as a red oil (2.69 g, 82%). ¹H NMR (300 MHz, CDCl₃): δ =1.29 (t, ³*J*=7.1 Hz, 3H, OCH₂CH₃), 2.33 (s, 3H, CH₃), 4.20 (q, ³*J*=7.0 Hz, 2H, OCH₂CH₃), 7.15–7.18 (m, 2H, CH_{Ar}), 7.31–7.39 (m, 2H, CH_{Ar}), 8.23 (s, 1H, CH_{Olf}). ¹³C NMR (75 MHz, CDCl₃): δ =15.1, 20.8 (CH₃), 74.3 (OCH₂), 121.8 (C), 125.7, 127.0, 131.0, 133.0 (CH_{Ar}), 136.9, 139.6 (C_{Ar}), 161.6 (CH_{Olf}), 187.2 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3064 (w), 2927 (w), 1698 (m), 1634 (m), 1561 (m), 1532 (m), 1456 (m), 1367 (m), 1300 (m), 1219 (s), 1163 (m), 1094 (m), 1002 (m), 909 (m), 873 (m), 839 (w), 796 (w), 731 (s), 696 (w), 649 (m).

4.7.3. 1-(2-Chlorophenyl)-3-ethoxy-2-nitroprop-2-en-1-one (**12c**). Starting with **11c** (2.0 g, 10.0 mmol), triethyl orthoformate (2.4 g, 1.51 mmol) and acetic anhydride (4.0 g., 25.30 mmol), **12c** was isolated as a reddish viscous oil (2.0 g, 81%). ¹H NMR (300 MHz, CDCl₃): δ =1.30 (t, ³*J*=7.0 Hz, 3H, OCH₂CH₃), 4.27 (q, ³*J*=6.9 Hz, 2H, OCH₂CH₃), 7.29–7.30 (m, 1H, CH_{Ar}), 7.34–7.35 (m, 2H, CH_{Ar}), 7.49–7.51 (m, 1H, CH_{Ar}), 8.29 (s, 1H, CH_{Olf}). ¹³C NMR (75 MHz, CDCl₃): δ =15.1 (CH₃), 75.1 (OCH₂), 126.6 (C), 128.9, 130.1, 131.9 (CH_{Ar}), 132.3 (C_{Ar}), 132.4 (CH_{Ar}), 136.4 (C_{Ar}), 160.0 (CH_{Olf}), 184.2 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3068 (w), 2930 (w), 1777 (w), 1683 (m), 1587 (m), 1560 (s), 1523 (m), 1470 (m), 1368 (m), 1319 (m), 1212 (m), 1163 (m), 1064 (m), 1037 (m), 917 (m), 816 (m), 739 (s), 684 (m), 606 (m), 583 (w), 549 (w).

4.8. General procedure for the synthesis of 4-nitrophenols 13a–i

To a CH₂Cl₂ solution (2 mL/1 mmol of **12a–c**) of **12a–c** was added **5** (1.65 mmol) and, subsequently, TiCl₄ (1.1 mmol) at -78 °C. The temperature of the solution was allowed to warm to 20 °C during 18 h with stirring. To the solution was added hydrochloric acid (10%, 20 mL) and the organic and the aqueous layer were separated. The latter was extracted with CH₂Cl₂ (3×20 mL). The combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, *n*-heptanes/EtOAc) to give **13a–i**.

4.8.1. Methyl 3-hydroxy-6-nitrobiphenyl-2-carboxylate (13a). Reaction starting with 12a (0.331 g, 1.5 mmol) and 5a (0.429 g, 1.7 mmol), 13a was isolated after chromatography (silica gel, heptanes/EtOAc) as a yellowish solid (0.230 g, 56%), mp=137-138 °C. ¹H NMR (300 MHz, CDCl₃): δ =3.35 (s, 3H, OCH₃), 7.02 (d, ³*I*=9.0 Hz, 1H, CH_{Ar}), 7.07-7.10 (m, 2H, CH_{Ph}), 7.27-7.31 (m, 3H, CH_{Ph}), 7.82 (d, ${}^{3}J=8.9$ Hz, 1H, CH_{Ar}), 11.07 (s, 1H, OH). ${}^{13}C$ NMR (CDCl₃, 75 MHz): δ =52.5 (OCH₃), 113.6 (CCOOCH₃), 117.7, 127.7, 127.7, 127.7, 127.8, 127.8, 128.5 (CH_{Ar}), 133.7, 136.2, 139.0 (C_{Ar}), 163.8 (COH), 170.2 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3086 (w), 3062 (w), 2954 (w), 1735 (w), 1670 (m), 1599 (w), 1576 (w), 1525 (m), 1501 (w), 1442 (m), 1324 (m), 1220 (m), 1156 (w), 1132 (m), 1095 (w), 1074 (w), 1026 (w), 970 (w), 907 (m), 837 (w), 813 (w), 769 (w), 727 (s), 698 (m), 672 (m), 648 (w), 584 (w). GC–MS (EI, 70 eV): m/z (%)=273 ([M]⁺, 80), 242 (17), 241 (100), 224 (15), 213 (25), 212 (13), 196 (14), 185 (18), 184 (11), 183 (13), 159 (16), 157 (11), 155 (20), 140 (15), 139 (66), 138 (10), 129 (25), 128 (14), 127 (19), 115 (10), 113 (10), 102 (10), 77 (12), 63 (11). HRMS (EI): Calcd for C₁₄H₁₁O₅N ([M]⁺): 273.06317; found: 273.063020.

4.8.2. Methyl 3-hydroxy-4-methyl-6-nitrobiphenyl-2-carboxylate (**13b**). Starting with **12a** (0.331 g, 1.5 mmol) and **5b** (0.457 g, 1.65 mmol), **13b** was isolated after chromatography (silica gel, heptanes/EtOAc) as a yellowish solid (0.245 g, 57%), mp=57–59 °C.

¹H NMR (300 MHz, CDCl₃): δ =2.28 (s, 3H, CH₃), 3.33 (s, 3H, OCH₃), 7.05–7.08 (m, 2H, CH_{Ph}), 7.26–7.29 (m, 3H, CH_{Ph}), 7.71 (s, 1H, CH_{Ar}), 11.33 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ =15.9 (CH₃), 52.4 (OCH₃), 112.6 (CCOOCH₃), 127.6 (CH_{Ar}), 127.7 (2×CH_{Ar}), 127.9 (3×CH_{Ar}), 133.2, 136.3, 136.6, 142.6 (C_{Ar}), 162.3 (COH), 170.8 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3062 (w), 2958 (w), 1737 (w), 1665 (m), 1574 (w), 1526 (m), 1495 (w), 1441 (m), 1373 (m), 1302 (m), 1251 (m), 1200 (m), 1170 (m), 1129 (m), 1070 (m), 1031 (w), 1001 (w), 983 (w), 902 (w), 864 (w), 812 (w), 778 (m), 727 (m), 696 (m), 663 (m), 610 (m), 574 (m). GC–MS (EI, 70 eV): *m/z* (%)=287 ([M]⁺, 80), 256 (17), 255 (100), 239 (15), 238 (75), 209 (15), 208 (76), 180 (10), 129 (14), 127 (10), 115 (14), 77 (10). HRMS (EI): Calcd for C₁₅H₁₃O₅N ([M]⁺): 287.07882; found: 287.078935.

4.8.3. Ethyl 4-ethyl-3-hydroxy-6-nitrobiphenyl-2-carboxylate (13c). Starting with **12a** (0.331 g, 1.5 mmol) and **5c** (0.499 g, 1.65 mmol), **13c** was isolated after chromatography (silica gel, heptanes/EtOAc) as a viscous yellowish oil (0.306 g, 65%). ¹H NMR (300 MHz, CDCl₃): δ=0.52 (t, ³*J*=7.6 Hz, 3H, CH₂*CH*₃), 1.12 (t, ³*J*=7.5 Hz, 3H, OCH₂*CH*₃), 2.59 (q, ³*J*=7.5 Hz, 2H, CH₂CH₃), 3.75 (q, ³*J*=7.5 Hz, 2H, OCH₂CH₃), 6.96-7.0 (m, 2H, CH_{Ph}), 7.16-7.18 (m, 3H, CH_{Ph}), 7.61 (s, 1H, CH_{Ar}), 11.42 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ =12.8, 13.0 (CH₃), 22.8, 61.8 (CH₂), 112.8 (CCOOCH₃), 127.6 (CH_{Ar}), 127.7 (2×CH_{Ar}), 128.1 (3×CH_{Ar}), 133.3, 136.2, 136.8, 142.8 (C_{Ar}), 162.2 (COH), 170.4 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3083 (w), 3002 (w), 2963 (w), 1737 (w), 1657 (m), 1600 (w), 1567 (w), 1512 (m), 1443 (m), 1329 (m), 1298 (m), 1241 (m), 1191 (s), 1149 (m), 1063 (m), 1018 (m), 968 (w), 900 (m), 822 (m), 803 (m), 733 (s), 695 (s), 668 (s), 621 (m), 581 (m), 524 (m). GC-MS (EI, 70 eV): m/z (%)=315 ([M]⁺, 54), 270 (10), 269 (50), 253 (19), 252 (100), 223 (18), 222 (89), 165 (22), 152 (21), 129 (8). HRMS (EI): Calcd for C₁₇H₁₇O₅N ([M]⁺): 315.11012; found: 315.110219.

4.8.4. Methyl 4-butyl-3-hydroxy-6-nitrobiphenyl-2-carboxylate (13d). Reaction starting with 12a (0.331 g, 1.5 mmol) and 5k (0.522 g, 1.7 mmol), **13d** was isolated after chromatography (silica gel, heptanes/EtOAc) as a viscous yellowish oil (0.285 g, 58%). ¹H NMR (300 MHz, CDCl₃): δ =0.88 (t, ³*J*=7.2 Hz, 3H, (CH₂)₃CH₃), 1.28– 1.40 (m, 2H, CH₂), 1.52–1.62 (m, 2H, CH₂), 2.64 (t, ³*J*=7.2 Hz, 2H, CH₃(CH₂)₂CH₂Ph), 3.31 (s, 3H, OCH₃), 7.04-7.07 (m, 2H, CH_{Ph}), 7.23-7.27 (m, 3H, CH_{Ph}), 7.68 (s, 1H, CH_{Ar}), 11.27 (s, 1H, OH). 13 C NMR (CDCl₃, 75 MHz): δ=13.9 (CH₃), 22.5, 29.4, 31.0 (CH₂), 52.4 (OCH₃), 112.9 (CCOOCH₃), 127.6 (CH_{Ar}), 127.7 (2×CH_{Ar}), 127.9 (2×CH_{Ar}), 128.9 (CH_{Ar}), 132.1, 136.2, 136.6, 142.7 (C_{Ar}), 162.0 (COH), 170.8 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3065 (w), 3006 (w), 2952 (w), 1674 (m), 1581 (w), 1531 (w), 1438 (m), 1380 (w), 1356 (m), 1311 (s), 1232 (m), 1140 (m), 1090 (m), 1030 (w), 940 (w), 914 (m), 850 (w), 808 (m), 771 (m), 732 (m), 698 (s), 671 (m), 628 (m), 608 (m). GC-MS (EI, 70 eV): m/z (%)=329 ([M]⁺, 48), 281 (12), 280 (59), 255 (18), 239 (15), 238 (100), 209 (10), 208 (36), 180 (10), 152 (21). HRMS (EI): Calcd for C₁₈H₁₉O₅N ([M]⁺): 329.12577; found: 329.125828.

4.8.5. *Methyl 3-hydroxy-6-nitro-4-octylbiphenyl-2-carboxylate* (**13e**). Star ting with **12a** (0.331 g, 1.5 mmol) and **5f** (0.614 g, 1.7 mmol), **13e** was isolated after chromatography (silica gel, heptanes/EtOAc) as a yellowish oil (0.357 g, 62%). ¹H NMR (300 MHz, CDCl₃): δ =0.71 (t, ³*J*=7.2 Hz, 3H, (CH₂)₇CH₃), 1.08–1.15 (m, 10H, 5×CH₂), 1.43–1.55 (m, 2H, CH₂), 2.56 (t, ³*J*=7.0 Hz, 2H, CH₃(CH₂)₆CH₂Ph), 3.23 (s, 3H, OCH₃), 6.96–6.99 (m, 2H, CH_{Ph}), 7.17–7.19 (m, 3H, CH_{Ph}), 7.60 (s, 1H, CH_{Ar}), 11.19 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ =14.1 (CH₃), 22.6, 28.8, 29.2, 29.3, 29.4, 29.6, 31.8 (CH₂), 52.3 (OCH₃), 112.9 (CCOOCH₃), 127.6 (CH_{Ar}), 127.4 (2×CH_{Ar}), 127.9 (2×CH_{Ar}), 128.9 (CH_{Ar}), 132.1, 136.2, 136.6, 142.7 (C_{Ar}), 162.0 (COH), 170.8 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3060 (w), 2952 (w), 2923 (m), 1666 (m), 1570 (w), 1526 (m), 1437 (m), 1336 (s), 1250 (m), 1164 (m), 1126 (m), 1074 (w), 1029 (w), 964 (w), 914 (w), 843 (w), 814 (m), 754 (m), 733 (m), 697

(s), 669 (m), 612 (w). GC–MS (EI, 70 eV): m/z (%)=385 ([M]⁺, 64), 337 (23), 336 (95), 255 (16), 254 (15), 239 (21), 238 (100), 209 (12), 208 (29), 180 (10), 152 (16). HRMS (EI): Calcd for $C_{12}H_{27}O_5N$ ([M]⁺): 385.18837; found: 385.188315.

4.8.6. *Methyl* 3-hydroxy-2'-methyl-6-nitrobiphenyl-2-carboxylate (13f). Starting with 12b (0.352 g, 1.5 mmol) and 5a (0.429 g, 1.7 mmol). **13f** was isolated after chromatography (silica gel, heptanes/EtOAc) as a yellowish solid (0.292 g, 68%), mp=74-76 $^{\circ}$ C. ¹H NMR (300 MHz, CDCl₃): δ=2.51 (s, 3H, CH₃), 3.28 (s, 3H, OCH₃), 6.96 $(d, {}^{3}I = 8.4 \text{ Hz}, 1\text{H}, CH_{Ar}), 7.11 - 7.15 (m, 3\text{H}, CH_{Ar}), 7.28 - 7.33 (m, 1\text{H}, 1\text{H})$ CH_{Ar}), 7.93 (d, ³*J*=8.4 Hz, 1H, CH_{Ar}), 11.33 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): *δ*=19.8 (CH₃), 52.6 (OCH₃), 113.1 (CCOOCH₃), 117.9, 125.2 (CH_{Ar}), 128.3 (2×CH_{Ar}), 129.1, 130.0 (CH_{Ar}), 132.9, 135.9, 139.0, 141.3 (C_{Ar}), 164.4 (COH), 170.2 (CO). IR (KBr, cm^{-1}): $\tilde{\nu}$ =3063 (w), 2954 (w), 2649 (w), 1673 (m), 1598 (m), 1575 (m), 1518 (m), 1490 (m), 1441 (m), 1313 (s), 1313 (s), 1268 (m), 1232 (s), 1221 (s), 1173 (m), 1132 (m), 1086 (m), 1052 (m), 1034 (w), 964 (m), 912 (m), 832 (m), 814 (m), 763 (m), 733 (s), 689 (m), 658 (m), 593 (m), 531 (m). GC–MS (EI, 70 eV): *m*/*z* (%)=287 ([M]⁺, 27), 270 (14), 269 (15), 256 (17), 239 (19), 238 (100), 237 (21), 228 (52), 226 (14), 181 (15), 153 (25), 127 (13), 115 (20), 63 (9). HRMS (EI): Calcd for C₁₅H₁₃O₅N ([M]⁺): 287.07882; found: 287.078912.

4.8.7. Methyl 3-hydroxy-2',4-dimethyl-6-nitrobiphenyl-2-carboxylate (13g). Starting with 12b (0.352 g, 1.5 mmol) and 5b (0.457 g, 1.7 mmol), **13g** was isolated after chromatography (silica gel, heptanes/EtOAc) as a yellowish solid (0.324 g, 72%), mp=70-72 °C. 1 H NMR (300 MHz, CDCl₃): δ=1.99 (s, 3H, CH₃), 2.29 (s, 3H, CH₃), 3.34 (s, 3H, OCH₃), 6.82–6.84 (m, 1H, CH_{Ar}), 7.03–7.16 (m, 3H, CH_{Ar}), 7.79 (s, 1H, CH_{Ar}), 11.63 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ=15.9, 19.9 (CH₃), 52.6 (OCH₃), 112.2 (CCOOCH₃), 125.2, 127.3 (CH_{Ar}), 127.7 (C_{Ar}), 128.8, 129.0, 130.1 (CH_{Ar}), 136.0, 136.2, 136.3, 142.3 (C_{Ar}), 163.0 (COH), 170.8 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3061 (w), 2953 (w), 2854 (w), 1664 (m), 1573 (m), 1523 (m), 1494 (w), 1380 (m), 1334 (s), 1285 (m), 1254 (s), 1202 (s), 1166 (m), 1133 (m), 1133 (m), 1104 (m), 1041 (w), 1018 (m), 964 (m), 899 (m), 871 (w), 813 (m), 753 (m), 723 (s), 661 (m), 589 (m), 531 (m). GC–MS (EI, 70 eV): m/z (%)=301 ([M]⁺, 29), 384 (12), 383 (10), 270 (17), 254 (15), 252 (100), 251 (21), 242 (41), 240 (12), 239 (31), 238 (54), 225 (13), 222 (63), 211 (11), 195 (10), 194 (16), 168 (12), 166 (23), 165 (62), 153 (14), 151 (11), 139 (14), 128 (12), 115 (23), 82 (12), 77 (10). HRMS (EI): Calcd for C₁₆H₁₅O₅N ([M]⁺): 301.09447; found: 301.093882.

2'-chloro-3-hydroxy-6-nitrobiphenyl-2-carboxylate 4.8.8. Methyl (13h). Starting with 12c (0.383 g, 1.5 mmol) and 5a (0.429 g, 1.7 mmol), **13h** was isolated after chromatography (silica gel, heptanes/EtOAc) as a yellowish solid (0.258 g, 56%), mp=101-103 °C.¹H NMR (300 MHz, CDCl₃): δ=3.41 (s, 3H, OCH₃), 6.92-7.02 (m, 1H, CH_{Ar}), 7.09 (d, ³*J*=9.0 Hz, 1H, CH_{Ar}), 7.17–7.20 (m, 1H, CH_{Ar}), 7.22–7.25 (m, 1H, CH_{Ar}), 7.35–7.38 (m, 1H, CH_{Ar}), 8.01 (d, ³*J*=9.0 Hz, 1H, CH_{Ar}), 11.52 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ=52.8 (OCH₃), 113.0 (CCOOCH₃), 118.6, 126.4, 128.7, 128.7, 129.2, 130.4 (CH_{Ar}), 132.9, 135.8, 136.5, 142.3 (C_{Ar}), 164.8 (COH), 169.9 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3073 (w), 2952 (w), 1673 (m), 1599 (m), 1578 (m), 1519 (m), 1480 (w), 1440 (s), 1323 (s), 1230 (m), 1204 (s), 1127 (m), 1049 (m), 968 (m), 914 (m), 841 (m), 811 (m), 750 (s), 737 (s), 698 (s), 644 (m), 592 (w). GC-MS (EI, 70 eV): *m*/*z*(%)=307([M]⁺, 10), 273(15), 272(100), 241(10), 240 (66), 226 (12), 212 (18), 184 (15), 173 (10). HRMS (EI): Calcd for C₁₄H₁₀O₅NCl ([M]⁺): 307.02420; found: 307.024320.

4.8.9. Methyl 2'-chloro-3-hydroxy-4-methyl-6-nitrobiphenyl-2-carboxylate (**13i**). Starting with **12c** (0.383 g, 1.5 mmol) and **5b** (0.457 g, 1.7 mmol), **13i** was isolated after chromatography (silica gel, heptanes/EtOAc) as a yellowish solid (0.337 g, 70%), mp=100–102 °C. ¹H NMR (300 MHz, CDCl₃): δ =2.31 (s, 3H, CH₃), 3.40 (s, 3H, OCH₃), 6.99

(dd, ${}^{3}J$ =6.9 Hz, ${}^{4}J$ =1.8 Hz, 1H, CH_{Ar}), 7.15–7.26 (m, 2H, CH_{Ar}), 7.35 (dd, ${}^{3}J$ =7.7 Hz, ${}^{4}J$ =1.5 Hz, 1H, CH_{Ar}), 7.90 (s, 1H, CH_{Ar}), 11.79 (s, 1H, OH). 13 C NMR (CDCl₃, 75 MHz): δ =16.0 (CH₃), 52.8 (OCH₃), 112.0 (CCOOCH₃), 126.4 (CH_{Ar}), 128.5 (C_{Ar}), 128.6, 128.8, 129.0, 130.5 (CH_{Ar}), 133.0, 133.8, 136.2, 141.6 (C_{Ar}), 163.4 (COH), 170.5 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2955 (w), 2853 (w), 1731 (w), 1664 (s), 1574 (m), 1521 (m), 1429 (m), 1378 (m), 1341 (s), 1265 (s), 1200 (s), 1128 (m), 1057 (m), 98 (m), 946 (w), 899 (m), 859 (w), 810 (m), 754 (m), 739 (s), 698 (s), 657 (m), 630 (m), 534 (w). GC-MS (EI, 70 eV): m/z (%)=321 ([M]⁺, 10), 287 (17), 286 (100), 255 (12), 254 (77), 226 (12), 198 (17), 152 (24), 139 (10). HRMS (EI): Calcd for C₁₅H₁₂O₅NCl ([M]⁺): 321.03985; found: 321.039927.

4.9. General procedure for the synthesis of 4-aminophenols (14a–i)

To a methanol suspension (25 mL/1 mmol of 13a-i) of 13a-i (1.0 equiv) or an ethanol suspension of 13c (1.0 equiv) was added Pd/C (10 mol %, 0.1 equiv). The mixture was set under a hydrogen atmosphere. After stirring for 48 h at 20 °C, the reaction mixture was filtered (Celite) and the filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, heptanes/EtOAc=2:1).

4.9.1. Methyl 6-amino-3-hydroxybiphenyl-2-carboxylate (14a). Starting with 13a (0.130 g, 0.475 mmol), 14a was isolated (0.099 g, 86%) by column chromatography (silica gel, heptanes/EtOAc= $30:1 \rightarrow$ 20:1) as a yellowish solid, mp=95-97 °C. ¹H NMR (300 MHz, CDCl₃): δ =3.02 (br, 2H, NH₂), 3.30 (s, 3H, OCH₃), 6.82–6.84 (m, 2H, CH_{Ar}), 7.08–7.11 (m, 2H, CH_{Ph}), 7.22–7.35 (m, 3H, CH_{Ph}), 10.07 (br, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ=51.6 (OCH₃), 112.5 (CCOOCH₃), 117.7, 123.1, 127.0, (CH_{Ar}), 127.5 (C_{Ar}), 128.5 (2×CH_{Ar}), 128.9 (2×CH_{Ar}), 136.9, 139.1 (C_{Ar}) , 154.7 (COH), 171.3 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3742 (w), 3060 (w), 2922 (w), 2788 (w), 2671 (w), 1721 (s), 1586 (m), 1488 (m), 1455 (m), 1433 (m), 1348 (m), 1302 (m), 1277 (s), 1239 (m), 1217 (s), 1158 (m), 1110 (m), 1087 (m), 1029 (w), 982 (m), 949 (m), 911 (m), 871 (m), 807 (m), 776 (m), 750 (m), 730 (m), 719 (s), 698 (s), 646 (m), 613 (m), 549 (m). GC–MS (EI, 70 eV): m/z (%)=243 ([M]⁺, 32), 212 (16), 211 (100), 183 (24), 155 (15), 154 (67), 128 (16), 127 (10), 77 (10). HRMS (EI): Calcd for C₁₄H₁₃O₃N ([M]⁺): 243.08899; found: 243.089209.

4.9.2. Methyl 6-amino-3-hydroxy-4-methylbiphenyl-2-carboxylate (14b). Starting with 13b (0.140 g, 0.487 mmol), 14b was isolated (0.107 g, 85%) by column chromatography (silica gel, heptanes/ EtOAc= $30:1 \rightarrow 20:1$) as a yellowish oil. ¹H NMR (300 MHz, CDCl₃): δ =2.17 (s, 3H, CH₃), 3.09 (br, 2H, NH₂), 3.28 (s, 3H, OCH₃), 6.73 (s, 1H, CH_{Ar}), 7.06–7.09 (m, 2H, CH_{Ar}), 7.22–7.25 (m, 1H, CH_{Ar}), 7.29–7.34 (m, 2H, CH_{Ar}), 10.36 (br, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ =16.3 (CH₃), 51.5 (OCH₃), 111.7 (CCOOCH₃), 124.2 (CH_{Ar}), 125.0 (C_{Ar}), 126.8 (CH_{Ar}), 128.4 (2×CH_{Ar}), 129.3 (2×CH_{Ar}), 132.5, 136.0, 139.4 (C_{Ar}), 153.1 (COH), 171.7 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3444 (w), 3057 (w), 2924 (w), 2851 (w), 1726 (w), 1658 (m), 1587 (m), 1499 (w), 1434 (m), 1347 (m), 1306 (m), 1280 (m), 1208 (s), 1149 (m), 1106 (m), 1072 (m), 1023 (m), 983 (m), 907 (m), 863 (m), 802 (m), 764 (m), 730 (s), 700 (s), 689 (s), 645 (m), 565 (m). GC–MS (EI, 70 eV): *m/z* (%)=257 ([M]⁺, 33), 226 (17), 225 (100), 197 (24), 169 (11), 168 (53), 167 (14), 154 (12), 128 (9). HRMS (EI): Calcd for C₁₅H₁₅O₃N ([M]⁺): 257.10464; found: 257.104582.

4.9.3. *Ethyl* 6-*amino*-4-*ethyl*-3-*hydroxybiphenyl*-2-*carboxylate* (**14c**). Starting with **13c** (0.130 g, 0.418 mmol), **14c** was isolated (0.111 g, 95%) by column chromatography (silica gel, heptanes/ EtOAc=30:1→20:1) as a yellowish oil. ¹H NMR (300 MHz, CDCl₃): δ =0.58 (t, ³*J*=7.0 Hz, 3H, CH₂CH₃), δ =1.17 (t, ³*J*=7.6 Hz, 3H, OCH₂CH₃), 2.60 (q, ³*J*=7.6 Hz, 2H, CH₂CH₃), 3.09 (br, 2H, NH₂), 3.81 (q, ³*J*=7.0 Hz, 2H, OCH₂CH₃), 6.76 (s, 1H, CH_{Ar}), 7.08–7.11 (m, 2H, CH_{Ar}), 7.21–7.34 (m, 3H, CH_{Ar}), 10.58 (br, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ =12.8, 13.7 (CH₃), 23.0 (CH₂), 60.6 (OCH₂), 111.8 (CCOOCH₃), 122.5 (CH_{Ar}), 125.1 (C_{Ar}), 126.7 (CH_{Ar}), 128.4 (2×CH_{Ar}), 129.1 (2×CH_{Ar}), 132.7, 136.0, 139.7 (C_{Ar}), 153.0 (COH), 171.4 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3447 (w), 3056 (w), 2964 (w), 2872 (w), 1654 (m), 1611 (m), 1585 (m), 1496 (w), 1429 (m), 1371 (m), 1326 (m), 1264 (m), 1205 (s), 1149 (m), 1106 (m), 1065 (m), 1014 (m), 968 (w), 909 (m), 853 (m), 803 (m), 762 (m), 731 (m), 699 (s), 681 (m), 645 (m), 569 (m). GC-MS (EI, 70 eV): *m/z* (%)=285 ([M]⁺, 30), 240 (17), 239 (100), 221 (11), 211 (13), 196 (25), 167 (11). HRMS (EI): Calcd for C₁₇H₁₉O₃N ([M]⁺): 285.13594; found: 285.135726.

4.9.4. Methyl 6-amino-4-butyl-3-hydroxybiphenyl-2-carboxylate (14d). Starting with 13d (0.130 g, 0.394 mmol), 14d was isolated (0.108 g, 92%) by column chromatography (silica gel, heptanes/ EtOAc=30:1 \rightarrow 20:1) as a vellowish oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.82$ (t, ³J=6.7 Hz, 3H, (CH₂)₃CH₃), 1.15–1.18 (m, 2H, CH₂), 1.50– 1.59 (m, 2H, CH₂), 2.56 (t, ³*J*=7.6 Hz, 2H, CH₃(CH₂)₂CH₂Ph), 3.06 (br, 2H, NH₂), 3.29 (s, 3H, OCH₃), 6.75 (s, 1H, CH_{Ar}), 7.07-7.12 (m, 2H, CH_{Ar}), 7.21–7.25 (m, 1H, CH_{Ar}), 7.32–7.36 (m, 2H, CH_{Ar}), 10.35 (br, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ=13.9 (CH₃), 22.5, 29.4, 31.0 (CH₂), 51.4 (OCH₃), 112.0 (CCOOCH₃), 123.5 (CH_{Ar}), 125.0 (C_{Ar}), 126.7 (CH_{Ar}), 128.5 (2×CH_{Ar}), 129.1 (2×CH_{Ar}), 131.4, 136.0, 139.5 (C_{Ar}), 152.8 (COH), 171.3 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3454 (w), 3055 (w), 2922 (m), 2851 (w), 1660 (m), 1598 (m), 1493 (w), 1433 (m), 1315 (m), 1263 (m), 1207 (s), 1152 (m), 1108 (m), 1071 (w), 998 (w), 920 (w), 871 (w), 809 (w), 764 (m), 721 (m), 700 (s), 683 (m), 647 (m), 569 (m). HRMS (EI): Calcd for C₁₈H₂₁O₃N ([M]⁺): 299.15299; found: 299.152209.

4.9.5. Methyl 6-amino-3-hydroxy-4-octylbiphenyl-2-carboxylate (14e). Starting with 13e (0.150 g, 0.389 mmol), 14e was isolated (0.124 g, 90%) by column chromatography (silica gel, heptanes/ EtOAc=30:1 \rightarrow 20:1) as a vellowish oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.81$ (t, ³*J*=6.5 Hz, 3H, (CH₂)₇CH₃), 1.17-1.25 (m, 10H, 5×CH₂), 1.51–1.61 (m, 2H, CH₂), 2.56 (t, ³*J*=7.8 Hz, 2H, CH₃(CH₂)₆CH₂Ph), 3.08 (br, 2H, NH₂), 3.28 (s, 3H, OCH₃), 6.74 (s, 1H, CH_{Ar}), 7.07-7.11 (m, 2H, CH_{Ar}), 7.20–7.25 (m, 1H, CH_{Ar}), 7.30–7.35 (m, 2H, CH_{Ar}), 10.34 (br, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ=14.1 (CH₃), 22.6, 29.3, 29.5, 29.5, 29.6, 30.3, 31.9 (CH₂), 51.5 (OCH₃), 111.9 (CCOOCH₃), 123.4 (CH_{Ar}), 125.1 (C_{Ar}), 126.8 (CH_{Ar}), 128.4 (2×CH_{Ar}), 129.0 (2×CH_{Ar}), 131.5, 135.9, 139.4 (C_{Ar}), 152.9 (COH), 171.7 (CO). IR (neat, cm⁻¹): ν̃=3455 (w), 3056 (w), 2922 (m), 2852 (w), 1659 (m), 1599 (m), 1497 (w), 1434 (m), 1317 (m), 1263 (m), 1208 (s), 1150 (m), 1108 (m), 1071 (w), 997 (w), 919 (w), 881 (w), 804 (w), 764 (m), 721 (m), 700 (s). GC-MS (EI, 70 eV): *m*/*z* (%)=355 ([M]⁺, 65), 324 (27), 323 (100), 322 (11), 306 (12), 266 (25), 252 (18), 324 (27), 323 (100), 322 (11), 306 (12), 266 (25), 252 (18), 238 (27), 225 (41), 224 (47), 209 (10), 208 (10), 197 (10), 196 (30), 180 (11), 168 (23), 167 (21), 41 (10). HRMS (EI): Calcd for C₂₂H₂₉O₃N ([M]⁺): 355.21420; found: 355.214070.

4.9.6. Methyl 6-amino-3-hydroxy-2'-methylbiphenyl-2-carboxylate (14f). Starting with 13f (0.120 g, 0.417 mmol), 14f was isolated (0.097 g. 91%) by column chromatography (silica gel, heptanes/ EtOAc= $30:1 \rightarrow 20:1$) as a vellowish viscous oil. ¹H NMR (300 MHz, CDCl₃): δ=1.98 (s, 3H, CH₃), 3.02 (br, 2H, NH₂), 3.31 (s, 3H, OCH₃), 6.68 (d, ³*J*=8.0 Hz, 1H, CH_{Ar}), 6.92–6.94 (m, 1H, CH_{Ar}), 7.18–7.23 (m, 3H, CH_{Ar}), 8.0 (d, ³J=8.2 Hz, 1H, CH_{Ar}), 9.98 (br, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ=19.5 (CH₃), 51.7 (OCH₃), 112.1 (CCOOCH₃), 117.6, 123.8, 126.1, 127.4 (CH_{Ar}), 127.8 (C_{Ar}), 128.9, 129.9 (CH_{Ar}), 135.3, 136.2, 138.1 (C_{Ar}) , 153.5 (COH), 171.7 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3451 (w), 3060 (w), 2921 (w), 2851 (w), 1664 (m), 1598 (m), 1489 (w), 1463 (m), 1436 (m), 1411 (w), 1335 (m), 1312 (m), 1287 (m), 1212 (s), 1119 (m), 1087 (m), 1037 (m), 982 (w), 913 (m), 806 (m), 757 (m), 734 (s), 689 (m), 624 (m), 565 (m). GC–MS (EI, 70 eV): *m*/*z* (%)=257 ([M]⁺, 39), 226 (17), 225 (100), 169 (15), 168 (50), 167 (10), 154 (10), 115 (9). HRMS (EI): Calcd for C₁₅H₁₅O₃N ([M]⁺): 257.10464; found: 257.104502.

4.9.7. Methyl 6-amino-3-hydroxy-2',4-dimethylbiphenyl-2-carboxylate (**14g**). Starting with **13g** (0.140 g, 0.464 mmol), **14g** was isolated (0.112 g, 89%) by column chromatography (silica gel, heptanes/EtOAc=30:1 \rightarrow 20:1) as a yellowish oil. ¹H NMR (300 MHz, CDCl₃): δ =1.98 (s, 3H, CH₃), 2.19 (s, 3H, CH₃), 3.04 (br, 2H, NH₂), 3.30 (s, 3H, OCH₃), 6.77 (s, 1H, CH_{Ar}), 6.88–6.91 (m, 1H, CH_{Ar}), 7.12–7.18 (m, 3H, CH_{Ar}), 10.61 (br, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ =16.0, 19.5 (CH₃), 51.6 (OCH₃), 111.3 (CCOOCH₃), 124.3 (CH_{Ar}), 124.5 (C_{Ar}), 126.0 (CH_{Ar}), 126.6 (C_{Ar}), 127.2, 128.8, 129.7 (CH_{Ar}), 135.5, 136.4, 138.6 (C_{Ar}), 153.5 (COH), 171.7 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3447 (w), 3057 (w), 2920 (w), 2850 (w), 1726 (w), 1658 (m), 1610 (m), 1456 (m), 1434 (s), 1377 (m), 1342 (m), 1284 (m), 1208 (s), 1150 (m), 1101 (m), 1023 (m), 983 (m), 909 (w), 869 (m), 804 (m), 758 (s), 728 (s), 678 (m), 645 (m), 578 (m). GC–MS (EI, 70 eV): *m/z* (%)=271 ([M]⁺, 39), 240 (17), 239 (100), 183 (10), 182 (25), 168 (30), 167 (13). HRMS (EI): Calcd for C₁₆H₁₇O₃N ([M]⁺): 271.12029; found: 271.120370.

4.9.8. Methyl 6-amino-2'-chloro-3-hydroxybiphenyl-2-carboxylate (14h). Starting with 13h (0.120 g, 0.390 mmol), 14h was isolated (0.095 g, 88%) by column chromatography (silica gel, heptanes/ EtOAc= $30:1 \rightarrow 20:1$) as a brown oil. ¹H NMR (300 MHz, CDCl₃): δ =3.03 (br, 2H, NH₂), 3.30 (s, 3H, OCH₃), 6.85 (d, ³*J*=8.0 Hz, 1H, CHAr), 7.09-7.11 (m, 2H, CHAr), 7.23-7.28 (m, 2H, CHAr), 7.32-7.37 (m, 2H, CH_{Ar}), 10.29 (br, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ =51.6 (OCH₃), 112.4 (CCOOCH₃), 117.7, 123.3, 127.0 (CH_{Ar}), 127.8 (C_{Ar}), 128.5, 128.5, 128.8 (CH_{Ar}), 135.5, 136.4, 139.0 (C_{Ar}), 154.8 (COH), 171.2 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3445 (w), 3056 (w), 2950 (w), 2850 (w), 1728 (w), 1663 (m), 1594 (m), 1463 (m), 1435 (s), 1335 (m), 1285 (m), 1209 (s), 1092 (m), 1027 (m), 982 (m), 805 (m), 759 (m), 732 (m), 700 (s), 626 (m), 580 (m). GC-MS (EI, 70 eV): m/z (%)=277 ([M]⁺, 42), 246 (14), 245 (100), 211 (19), 210 (59), 183 (10), 182 (52), 154 (62), 153 (13), 127 (14), 77 (11). HRMS (EI): Calcd for C₁₄H₁₂O₃NCl ([M]⁺): 277.05002; found: 277.050203.

4.9.9. Methyl 6-amino-2'-chloro-3-hydroxy-4-methylbiphenyl-2-carboxylate (14i). Starting with 13i (0.120 g, 0.373 mmol), 14i was isolated (0.097 g, 90%) by column chromatography (silica gel, heptanes/EtOAc= $30:1 \rightarrow 20:1$) as a brown oil. ¹H NMR (300 MHz, CDCl₃): *δ*=2.19 (s, 3H, CH₃), 3.02 (br, 2H, NH₂), 3.29 (s, 3H, OCH₃), 6.78 (s, 1H, CH_{Ar}), 7.07–7.10 (m, 1H, CH_{Ar}), 7.23–7.26 (m, 1H, CH_{Ar}), 7.30-7.35 (m, 2H, CH_{Ar}), 10.42 (br, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ=16.0 (CH₃), 51.5 (OCH₃), 111.7 (CCOOCH₃), 124.3 (CH_{Ar}), 125.3 (CAr), 126.8 (CHAr), 127.8 (CAr), 128.4 (2×CHAr), 129.0 (CHAr), 132.5, 135.5, 139.2 (C_{Ar}), 153.4 (COH), 171.6 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3447 (w), 3056 (w), 2949 (w), 2851 (w), 1731 (w), 1658 (m), 1612 (m), 1599 (m), 1498 (w), 1434 (s), 1377 (m), 1280 (m), 1206 (s), 1149 (m), 1105 (m), 1072 (m), 1005 (m), 983 (m), 919 (w), 803 (m), 763 (m), 700 (s), 644 (m), 588 (m). GC-MS (EI, 70 eV): m/z (%)=257 ([M]⁺, 33), 226 (17), 225 (100), 197 (22), 168 (49), 167 (14), 154 (11). HRMS (EI): Calcd for C₁₅H₁₄O₃NCl ([M]⁺): 291.07029; found: 291.070370.

Acknowledgements

Financial support by the State of Pakistan (HEC scholarships for M.A.Y. and I.H.) and by the State of Mecklenburg-Vorpommern (scholarship for M.S.) is gratefully acknowledged.

References and notes

- 1. Römpp Lexikon Naturstoffe; Steglich, W., Fugmann, B., Lang-Fugmann, S., Eds.; Thieme: Stuttgart, 1997.
- (a) Li, C.; Taneda, S.; Suzuki, A. K.; Furuta, C.; Watanabe, G.; Taya, K. Eur. J. Pharmacol. 2006, 543, 194; (b) Yoki, K.; Kamata, K.; Toda, N.; Hayashi, H.; Seki, K.-i.; Taneda, S.; Yoshino, S.; Sakushima, A.; Sakata, M.; Suzuki, A. K. Biol. Pharm. Bull. 2003, 26, 394; (c) Bitsch, N.; Dudas, C.; Koerner, W.; Failing, K.; Biselli, S.; Rimkus, G.; Brunn, H. Arch. Environ. Contam. Toxicol. 2002, 43, 257; (d) Api, A. M.; Gudi, R. Mutant. Res. 2000, 464, 263; (e) Lehman-McKeeman, L. D.; Caudill, D.; Vassallo, J. D.; Pearce, R. E.; Madan, A.; Parkinson, A. Toxicol. Lett. 1999, 111, 105.

- (a) Nadin, L.; Murray, M. Biochem. Pharmacol. 1999, 58, 1201; (b) Fent, K.; Escher, C.; Caminada, D. Reprod. Toxicol. 2006, 22, 175; (c) Khamdang, S.; Takeda, M.; Noshiro, R.; Narikawa, S.; Enomoto, A.; Anzai, N.; Piyachaturawat, P.; Endou, H. J. Pharmacol. Exp. Ther. 2002, 303, 534; (d) Gobec, S.; Brozic, P.; Rizner, T. L. Bioorg. Med. Chem. Lett. 2005, 15, 5170; (e) Tran, T.; Saheba, E.; Arcerio, A. V.; Chavez, V.; Li, Q.-y.; Martinez, L. E.; Primm, T. P. Bioorg. Med. Chem. 2004, 12, 4809.
- (a) Alvi, K. A.; Nair, B.; Gallo, C.; Baker, D. J. Antibiot. **1997**, *50*, 264; (b) de Oliveira, M. F.; Oliveira, J. H. H. L.; Galetti, F. C. S.; de Souza, A. O.; Silva, C. L.; Hajdu, E.; Peixinho, S.; Berlinck, R. G. S. *Planta Med.* **2006**, *72*, 437; (c) Lee, J.; Chubb, A. J.; Moman, E.; McLoughlin, B. M.; Sharkey, C. T.; Kelly, J. G.; Nolan, K. B.; Devocelle, M.; Fitzgerald, D. J. Org. *Biomol. Chem.* **2005**, *3*, 3678.
- 5. Alvi, K. A.; Diaz, M. C.; Crews, P.; Slate, D. L.; Lee, R. H.; Moretti, R. J. Org. Chem. **1992**, 57, 6604.
- 6. Ismail, L. D.; Lorenz, P.; Stermitz, F. J. Nat. Prod. 1998, 61, 1174.
- (a) Davies, J.; Wang, H.; Taylor, T.; Warabi, K.; Huang, X.-H.; Andersen, R. J. Org. Lett. 2005, 7, 5233; (b) Thale, Z.; Johnson, T.; Tenney, K.; Wenzel, P. J.; Lobkovsky, E.; Clardy, J.; Media, J.; Pietraszkiewicz, H.; Valeriote, F. A.; Crews, P. J. Org. Chem. 2002, 67, 9384.
- (a) Werbel, L. M.; Cook, P. D.; Elslager, E. F.; Hung, J. H.; Johnson, J. L.; Kesten, S. J.; McNamara, D. J.; Ortwine, D. F.; Worth, D. F. *J. Med. Chem.* **1986**, 29, 924; (b) Take, K.; Okumura, K.; Takimoto, K.; Kato, M.; Ohtsuka, M.; Shiokawa, Y. *Chem.* Pharm. Bull. 1991, 39, 2915; (c) Astles, P. C.; Brown, T. J.; Cox, P.; Halley, F.; Lockey, P. M.; Mccarthy, C.; Mclay, I. M.; Majid, T. N.; Morley, A. D. Bioorg. Med. Chem. Lett. 1997, 7, 907; (d) Ukita, T.; Nakamura, Y.; Kubo, A.; Yamamoto, Y.; Takahashi, M.; Kotera, J.; Ikeo, T. J. Med. Chem. 1999, 42, 1293; (e) Sun, L.; Tran, N.; Liang, C.; Tang, F.; Rice, A.; Schreck, R.; Waltz, K.; Shawver, L. K.; McMahon, G.; Tang, C. J. Med. Chem. 1999, 42, 5120; (f) Poupart, M.-A.; Cameron, D. R.; Chabot, C.; Ghiro, E.; Goudreau, N.; Goulet, S.; Poirier, M.; Tsantrizos, Y. S. J. Org. Chem. 2001, 66, 4743; (g) Parikh, V.; Welch, W. M.; Schmidt, A. W. Bioorg. Med. Chem. Lett. 2003, 13, 269; (h) Wang, L.; Wang, G. T.; Wang, X.; Tong, Y.; Sullivan, G.; Park, D.; Leonard, N. M.; Li, Q.; Cohen, J.; Gu, W.-Z.; Zhang, H.; Bauch, J. L.; Jakob, C. G.; Hutchins, C. W.; Stoll, V. S.; Marsh, K.; Rosenberg, S. H.; Sham, H. L.; Lin, N.-H. J. Med. Chem. 2004, 47, 612; (i) Sheppard, G. S.; Kawai, M.; Craig, R. A.; Davidson, D. J.; Majest, S. M.; Bell, R. L.; Henkin, J. Bioorg. Med. Chem. Lett. 2004, 14, 965; (j) Mor, M.; Rivara, S.; Lodola, A.; Plazzi, P. V.; Tarzia, G.; Duranti, A.; Tontini, A.; Piersanti, G.; Kathuria, S.; Piomelli, D. J. Med. Chem. 2004, 47, 4998; (k) Hayakawa, I.; Shioya, R.; Agatsuma, T.; Furukawa, H.; Naruto, S.; Sugano, Y. Bioorg. Med. Chem. Lett. 2004, 14, 4383.
- (a) Castedo, L.; Lopez, S.; Rodriguez, de Lera A.; Villaverde, C. *Phytochemistry* **1989**, *28*, 251; (b) Satou, T.; Akao, N.; Matsuhashi, R.; Koike, K.; Fujita, K.; Nikaido, T. *Biol. Pharm. Bull.* **2002**, *25*, 1651; (c) Chen, J.-J.; Chang, Y.-L.; Teng, C.-M.; Lin, W.-Y.; Chen, Y.-C.; Chen, I.-S. *Planta Med.* **2001**, *67*, 423.
- (a) Chen, J.-J.; Fang, H.-Y.; Duh, C.-Y.; Chen, I.-S. Planta Med. 2005, 71, 470; (b) Tsai, I.-L.; Wun, M.-F.; Teng, C.-M.; Ishikawa, T.; Chen, I.-S. Phytochemistry 1998, 48, 1377; (c) Ng, K. M.; Gray, A. I.; Waterman, P. G. Phytochemistry 1987, 26, 3251.
- (a) Chou, H.-C.; Chen, J.-J.; Duh, C.-Y.; Huang, T.-F.; Chen, I.-S. Planta Med. 2005, 71, 1078; (b) Vardamides, J. C.; Dongmo, A. B.; Meyer, M.; Ndom, J. C.; Azebaze, A. G. B.; Zounda, M. R. S.; Sielinou, V. T.; Ndemangou, B.; Nkengfack, A. E.; Ngando, T. M.; Fomum, Z. T. Chem. Pharm. Bull. 2006, 54, 1034; (c) Tsai, I.-L.; Wun, M.-F.; Teng, C.-M.; Ishikawa, T.; Chen, I.-S. Phytochemistry 1998, 48, 1377; (d) Tsai, I.-L.; Fang, S.-C.; Ishikawa, T.; Chang, C.-T.; Chen, I.-S. Phytochemistry 1997, 44, 1383.
- Llabres, J. M.; Viladomat, F.; Bastida, J.; Codina, C.; Rubiralta, M. *Phytochemistry* 1986, 25, 2637. For synthetic work, see; (a) Ganton, M. D.; Kerr, M. A. Org. Lett. 2005, 7, 4777; (b) Torres, J. C.; Pinto, A. C.; Garden, S. J. *Tetrahedron* 2004, 60, 9889.
- (a) Kleppinger, R.; Lillya, C. P.; Yang, C. J. Am. Chem. Soc. 1997, 119, 4097;
 (b) Mohanakrishnan, A. K.; Srinivasan, P. C. J. Org. Chem. 1995, 60, 1939.
- 14. Delaude, L.; Laszlo, P.; Smith, K. Acc. Chem. Res. 1993, 26, 607.
- 15. Ramana, M. M. V.; Malik, S. S.; Parihar, J. A. Tetrahedron Lett. 2004, 45, 8681.
- 16. Rajagopal, R.; Srinivasan, K. V. Synth. Commun. 2003, 33, 961.
- (a) Poesche, W. H. J. Chem. Soc. C 1966, 890; (b) Forrest, J. J. Chem. Soc. 1960, 589;
 (c) Helmchen, G.; Prelog, V. Helv. Chim. Acta 1972, 55, 2599; (d) Suzuki, H.; Enya, T.; Hisamatsu, Y. Synthesis 1997, 1273; (e) Bell, A. J.; Read, R. W. Aust. J. Chem. 1987, 40, 1813; (f) Take, K.; Okumura, K.; Takimoto, K.; Kato, M.; Ohtsuka, M.; Shiokawa, Y. Chem. Pharm. Bull. 1991, 39, 2915.
- Metal-Catalyzed Cross-Coupling Reactions; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004.
- (a) Elango, S.; Srinivasan, P. C. Tetrahedron Lett. 1993, 34, 1347; (b) Dow, R. L; Chou, T. T.; Bechle, B. M.; Goddard, C.; Larson, E. R. J. Med. Chem. 1994, 37, 2224; (c) Kleppinger, R.; Lillya, C. P.; Yang, C. Angew. Chem. 1995, 107, 1762; Angew. Chem., Int. Ed. Engl. 1995, 34, 1637; (d) Kanojia, R. M.; Ohemeng, K. A.; Schwender, C. F.; Barrett, J. F. Tetrahedron Lett. 1995, 36, 8553; (e) Li, J.-H.; Serdyuk, L.; Ferraris, D. V.; Xiao, G.; Tays, K. L.; Kletzly, P. W.; Li, W.; Lautar, S.; Zhang, J.; Kalish, V. J. Bioorg. Med. Chem. Lett. 2001, 11, 1687; (f) Goerlitzer, K.; Trittmacher, J.; Jones, P. G.; Frohberg, P.; Drutkowsi, G. Pharmazie 2003, 58, 776; (g) Banwell, M. G.; Lupton, D. W.; Ma, X.; Renner, J.; Sydnes, M. O. Org. Lett. 2004, 6, 2741; (h) Zhang, W.; Wilke, B. I.; Zhan, J.; Watanabe, K.; Boddy, C. N.; Tang, Y. J. Am. Chem. Soc. 2007, 129, 9304.
- Davies, I. W.; Marcoux, J.-F.; Kuethe, J. T.; Lankshear, M. D.; Taylor, J. D. O.; Tsou, N.; Dormer, P. G.; Hughes, D. L.; Houk, K. N.; Guner, V. J. Org. Chem. 2004, 69, 1298.
- (a) Ashburn, B. O.; Carter, R. G.; Zakharov, L. N. J. Am. Chem. Soc. 2007, 129, 9109;
 (b) Ashburn, B. O.; Carter, R. G.; Zakharov, L. N. J. Org. Chem. 2008, 73, 7305;
 (c) Perkins, J. R.; Carter, R. G. J. Am. Chem. Soc. 2008, 130, 3290;
 (d) Ashburn, B. O.;

Carter, R. G. Org. Biomol. Chem. 2008, 6, 255; (e) Ashburn, B. O.; Rathbone, L. K.; Camp, E. H.; Carter, R. G. *Tetrahedron* 2008, 64, 856; (f) Naffiger, M. R.; Ashburn, B. O.; Perkins, J. R.; Carter, R. G. *J. Org. Chem.* 2007, 72, 9857; (g) Ashburn, B. O.; Carter, R. G. J. Org. Chem. 2007, 72, 10220; (h) Ashburn, B. O.; Carter, R. G. Angew. Chem. Int., Ed. **2006**, 45, 6737.

- (a) Chan, T.-H.; Brownbridge, P. J. Am. Chem. Soc. **1980**, 102, 3534; (b) Brownbridge, P.; Chan, T.-H.; Brook, M. A.; Kang, G. J. Can. J. Chem. **1983**, 61, 688.
 23. For a review of [3+3] cyclizations, see: Feist, H.; Langer, P. Synthesis **2007**, 327.
- 24. For a review of 1,3-bis(silyl enol ethers), see: Langer, P. Synthesis 2002, 441.
- 25. Yawer, M. A.; Hussain, I.; Iqbal, I.; Spannenberg, A.; Langer, P. Tetrahedron Lett. 2008, 49, 4467. 26. Riahi, A.; Shkoor, M.; Khera, R. A.; Reinke, H.; Langer, P. Tetrahedron Lett. 2009,
- 50, 3017.
- 27. Nakamatsu, S.; Yoshizawa, K.; Toyota, S.; Toda, F.; Matijasic, I. Org. Biomol. Chem. **2003**, *1*, 13.
- 28. Field, G. F.; Zally, S. Synthesis 1979, 295.